Central Composite Optimization of Glycerosomes for the Enhanced Oral Bioavailability and Brain Delivery of Quetiapine Fumarate
Abstract
:1. Introduction
2. Results and Discussion
2.1. Evaluation of QTF Glycerosomal Formulations
2.1.1. Measurement of Vesicle Size VS, PDI, and ZP
2.1.2. Measurement of EE%
2.2. Statistical Analysis, Optimization, and Validation
2.3. Evaluation of the Optimum QTP Formula
2.3.1. Differential Scanning Calorimetry (DSC)
2.3.2. X-ray Diffraction Study (XRD)
2.3.3. Transmission Electron Microscopy (TEM)
2.3.4. In-Vitro Release
2.3.5. Effect of Aging
2.4. In-Vivo Bioavailability of the Optimized QTP Glycerosomal Formula
3. Materials and Methods
3.1. Materials
3.2. Statistical Design of QTF Loaded GLSMs
3.3. Preparation of QTF Glycerosomal Formulations
3.4. Evaluation of QTF Glycerosomal Formulations
3.4.1. Measurement of Vesicles Size (VS), Polydispersity Index (PDI), and Zeta Potential (ZP)
3.4.2. Measurement of Entrapment Efficiency (EE%)
3.5. Statistical Analysis, Optimization, and Validation
3.6. Evaluation of the Optimum QTF Formula
3.6.1. Differential Scanning Calorimetry (DSC)
3.6.2. X-ray Diffraction Study (XRD)
3.6.3. Transmission Electron Microscopy (TEM)
3.6.4. In-Vitro Release
3.6.5. Effect of Aging
3.7. In-Vivo Bioavailability of the Optimized QTF Loaded GLSMs
3.7.1. Study Design
3.7.2. HPLC Assay of QTF in Plasma and Brain
3.7.3. Pharmacokinetic Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bülbül, E.Ö.; Mesut, B.; Cevher, E.; Öztaş, E.; Özsoy, Y. Product transfer from lab-scale to pilot-scale of quetiapine fumarate orodispersible films using quality by design approach. J. Drug Deliv. Sci. Technol. 2019, 54, 101358. [Google Scholar] [CrossRef]
- Boche, M.; Pokharkar, V. Quetiapine nanoemulsion for intranasal drug delivery: Evaluation of brain-targeting efficiency. AAPS PharmSciTech 2017, 18, 686–696. [Google Scholar] [CrossRef]
- Thompson, W.; Quay, T.A.; Rojas-Fernandez, C.; Farrell, B.; Bjerre, L.M. Atypical antipsychotics for insomnia: A systematic review. Sleep Med. 2016, 22, 13–17. [Google Scholar] [CrossRef]
- Patel, N.; Baldaniya, M.; Raval, M.; Sheth, N. Formulation and development of in situ nasal gelling systems for quetiapine fumarate-loaded mucoadhesive microemulsion. J. Pharm. Innov. 2015, 10, 357–373. [Google Scholar] [CrossRef]
- Karki, S.; Kim, H.; Na, S.-J.; Shin, D.; Jo, K.; Lee, J. Thin films as an emerging platform for drug delivery. Asian J. Pharm. Sci. 2016, 11, 559–574. [Google Scholar] [CrossRef]
- Estevez-Carrizo, F.E.; Parrillo, S.; Ercoli, M.C.; Estevez-Parrillo, F.T. Single-dose relative bioavailability of a new quetiapine fumarate extended-release formulation: A postprandial, randomized, open-label, two-period crossover study in healthy Uruguayan volunteers. Clin. Ther. 2011, 33, 738–745. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, C.-C.; Chen, K.-P.; Tsai, C.-J.; Wang, L.-J.; Chen, C.-K.; Lin, S.-K. Rapid initiation of quetiapine well tolerated as compared with the conventional initiation regimen in patients with schizophrenia or schizoaffective disorders. Kaohsiung J. Med. Sci. 2011, 27, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Baig, M.R.; Wilson, J.L.; Lemmer, J.A.; Beck, R.D.; Peterson, A.L.; Roache, J.D. Enhancing completion of cognitive processing therapy for posttraumatic stress disorder with quetiapine in veterans with mild traumatic brain injury: A case series. Psychiatr. Q. 2019, 90, 431–445. [Google Scholar] [CrossRef] [PubMed]
- Maan, J.S.; Ershadi, M.; Khan, I.; Saadabadi, A. Quetiapine; StatPearls Publishing: Tampa, FL, USA, 2021. [Google Scholar]
- Narala, A.; Veerabrahma, K. Preparation, characterization and evaluation of quetiapine fumarate solid lipid nanoparticles to improve the oral bioavailability. J. Pharm. 2013, 2013, 265741. [Google Scholar] [CrossRef]
- Khunt, D.; Shah, B.; Misra, M. Role of butter oil in brain targeted delivery of Quetiapine fumarate microemulsion via intranasal route. J. Drug Deliv. Sci. Technol. 2017, 40, 11–20. [Google Scholar] [CrossRef]
- Shah, B.; Khunt, D.; Misra, M.; Padh, H. Application of Box-Behnken design for optimization and development of quetiapine fumarate loaded chitosan nanoparticles for brain delivery via intranasal route*. Int. J. Biol. Macromol. 2016, 89, 206–218. [Google Scholar] [CrossRef] [PubMed]
- Shah, B.; Khunt, D.; Misra, M. Comparative evaluation of intranasally delivered quetiapine loaded mucoadhesive microemulsion and polymeric nanoparticles for brain targeting: Pharmacokinetic and gamma scintigraphy studies. Future J. Pharm. Sci. 2021, 7, 1–12. [Google Scholar] [CrossRef]
- Ben Hadj Ayed, O.; Lassoued, M.A.; Sfar, S. Quality-by-Design Approach Development, Characterization, and In Vitro Release Mechanism Elucidation of Nanostructured Lipid Carriers for Quetiapine Fumarate Oral Delivery. J. Pharm. Innov. 2021, 1–16. [Google Scholar] [CrossRef]
- Lawless, E.; Griffin, B.T.; O’Mahony, A.; O’Driscoll, C.M. Exploring the impact of drug properties on the extent of intestinal lymphatic transport-in vitro and in vivo studies. Pharm. Res. 2015, 32, 1817–1829. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Garg, A.; Verma, A. Nano lipid based carriers for lymphatic voyage of anti-cancer drugs: An insight into the in-vitro, ex-vivo, in-situ and in-vivo study models. J. Drug Deliv. Sci. Technol. 2020, 59, 101899. [Google Scholar] [CrossRef]
- Poonia, N.; Kharb, R.; Lather, V.; Pandita, D. Nanostructured lipid carriers: Versatile oral delivery vehicle. Future Sci. OA 2016, 2, FSO135. [Google Scholar] [CrossRef]
- Pandya, P.; Giram, P.; Bhole, R.P.; Chang, H.-I.; Raut, S.Y. Nanocarriers based oral lymphatic drug targeting: Strategic bioavailability enhancement approaches. J. Drug Deliv. Sci. Technol. 2021, 64, 102585. [Google Scholar] [CrossRef]
- Agrahari, V. The exciting potential of nanotherapy in brain-tumor targeted drug delivery approaches. Neural Regen. Res. 2017, 12, 197. [Google Scholar] [CrossRef]
- Chopra, H.; Dey, P.S.; Das, D.; Bhattacharya, T.; Shah, M.; Mubin, S.; Maishu, S.P.; Akter, R.; Rahman, M.H.; Karthika, C. Curcumin nanoparticles as promising therapeutic agents for drug targets. Molecules 2021, 26, 4998. [Google Scholar] [CrossRef]
- Herdiana, Y.; Wathoni, N.; Shamsuddin, S.; Muchtaridi, M. Drug release study of the chitosan-based nanoparticles. Heliyon 2021, 8, e08674. [Google Scholar] [CrossRef]
- Zorkina, Y.; Abramova, O.; Ushakova, V.; Morozova, A.; Zubkov, E.; Valikhov, M.; Melnikov, P.; Majouga, A.; Chekhonin, V. Nano carrier drug delivery systems for the treatment of neuropsychiatric disorders: Advantages and limitations. Molecules 2020, 25, 5294. [Google Scholar] [CrossRef] [PubMed]
- Manca, M.L.; Zaru, M.; Manconi, M.; Lai, F.; Valenti, D.; Sinico, C.; Fadda, A.M. Glycerosomes: A new tool for effective dermal and transdermal drug delivery. Int. J. Pharm. 2013, 455, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Zaru, M.; Manca, M.L.; Fadda, A.M.; Orsini, G. Glycerosomes and Use Thereof in Pharmaceutical and Cosmetic Preparations for Topical Applications. U.S. Patent No. 8,778,367, 15 July 2014. [Google Scholar]
- Gupta, P.; Mazumder, R.; Padhi, S. Glycerosomes: Advanced liposomal drug delivery system. Indian J. Pharm. Sci. 2020, 82, 385–397. [Google Scholar] [CrossRef]
- Salem, H.F.; Kharshoum, R.M.; Sayed, O.M.; Abdel Hakim, L.F. Formulation design and optimization of novel soft glycerosomes for enhanced topical delivery of celecoxib and cupferron by Box–Behnken statistical design. Drug Dev. Ind. Pharm. 2018, 44, 1871–1884. [Google Scholar] [CrossRef]
- Bshara, H.; Osman, R.; Mansour, S.; El-Shamy, A.E.-H.A. Chitosan and cyclodextrin in intranasal microemulsion for improved brain buspirone hydrochloride pharmacokinetics in rats. Carbohydr. Polym. 2014, 99, 297–305. [Google Scholar] [CrossRef]
- Abourehab, M.A.; Khames, A.; Genedy, S.; Mostafa, S.; Khaleel, M.A.; Omar, M.M.; El Sisi, A.M. Sesame oil-based nanostructured lipid carriers of nicergoline, intranasal delivery system for brain targeting of synergistic cerebrovascular protection. Pharmaceutics 2021, 13, 581. [Google Scholar] [CrossRef]
- Said, M.; Aboelwafa, A.A.; Elshafeey, A.H.; Elsayed, I. Central composite optimization of ocular mucoadhesive cubosomes for enhanced bioavailability and controlled delivery of voriconazole. J. Drug Deliv. Sci. Technol. 2021, 61, 102075. [Google Scholar] [CrossRef]
- Essa, E.A. Effect of formulation and processing variables on the particle size of sorbitan monopalmitate niosomes. Asian J. Pharm. AJP 2014, 4, 227–233. [Google Scholar] [CrossRef]
- Salem, H.F.; Nafady, M.M.; Ali, A.A.; Khalil, N.M.; Elsisi, A.A. Evaluation of Metformin Hydrochloride Tailoring Bilosomes as an Effective Transdermal Nanocarrier. Int. J. Nanomed. 2022, 17, 1185. [Google Scholar] [CrossRef]
- Vitonyte, J.; Manca, M.L.; Caddeo, C.; Valenti, D.; Peris, J.E.; Usach, I.; Nacher, A.; Matos, M.; Gutiérrez, G.; Orrù, G. Bifunctional viscous nanovesicles co-loaded with resveratrol and gallic acid for skin protection against microbial and oxidative injuries. Eur. J. Pharm. Biopharm. 2017, 114, 278–287. [Google Scholar] [CrossRef]
- Md, S.; Alhakamy, N.A.; Aldawsari, H.M.; Husain, M.; Khan, N.; Alfaleh, M.A.; Asfour, H.Z.; Riadi, Y.; Bilgrami, A.L.; Akhter, M.H. Plumbagin-Loaded Glycerosome Gel as Topical Delivery System for Skin Cancer Therapy. Polymers 2021, 13, 923. [Google Scholar] [CrossRef] [PubMed]
- Mazyed, E.A.; Abdelaziz, A.E. Fabrication of transgelosomes for enhancing the ocular delivery of acetazolamide: Statistical optimization, in vitro characterization, and in vivo study. Pharmaceutics 2020, 12, 465. [Google Scholar] [CrossRef] [PubMed]
- Vadlamudi, H.C.; Yalavarthi, P.R.; Nagaswaram, T.; Rasheed, A.; Peesa, J.P. In-vitro and pharmacodynamic characterization of solidified self microemulsified system of quetiapine fumarate. J. Pharm. Investig. 2019, 49, 161–172. [Google Scholar] [CrossRef]
- Westesen, K.; Bunjes, H.; Koch, M. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. J. Control. Release 1997, 48, 223–236. [Google Scholar] [CrossRef]
- Narendar, D.; Arjun, N.; Someshwar, K.; Rao, Y.M. Quality by design approach for development and optimization of Quetiapine Fumarate effervescent floating matrix tablets for improved oral bioavailability. J. Pharm. Investig. 2016, 46, 253–263. [Google Scholar] [CrossRef]
- Sun, X.; Yu, Z.; Cai, Z.; Yu, L.; Lv, Y. Voriconazole composited polyvinyl alcohol/hydroxypropyl-β-cyclodextrin nanofibers for ophthalmic delivery. PLoS ONE 2016, 11, e0167961. [Google Scholar] [CrossRef]
- Zaki, R.M.; Alfadhel, M.M.; Alshahrani, S.M.; Alsaqr, A.; Al-Kharashi, L.A.; Anwer, M.K. Formulation of Chitosan-Coated Brigatinib Nanospanlastics: Optimization, Characterization, Stability Assessment and In-Vitro Cytotoxicity Activity against H-1975 Cell Lines. Pharmaceuticals 2022, 15, 348. [Google Scholar] [CrossRef]
- Dehghani, F.; Farhadian, N.; Golmohammadzadeh, S.; Biriaee, A.; Ebrahimi, M.; Karimi, M. Preparation, characterization and in-vivo evaluation of microemulsions containing tamoxifen citrate anti-cancer drug. Eur. J. Pharm. Sci. 2017, 96, 479–489. [Google Scholar] [CrossRef]
- Said, M.; Elsayed, I.; Aboelwafa, A.A.; Elshafeey, A.H. Transdermal agomelatine microemulsion gel: Pyramidal screening, statistical optimization and in vivo bioavailability. Drug Deliv. 2017, 24, 1159–1169. [Google Scholar] [CrossRef]
- Said, M.; Elsayed, I.; Aboelwafa, A.A.; Elshafeey, A.H. A novel concept of overcoming the skin barrier using augmented liquid nanocrystals: Box-Behnken optimization, ex vivo and in vivo evaluation. Colloids Surf. B Biointerfaces 2018, 170, 258–265. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Zhang, T.; Wang, C.; Huang, Z.; Luo, X.; Deng, Y. A review on phospholipids and their main applications in drug delivery systems. Asian J. Pharm. Sci. 2015, 10, 81–98. [Google Scholar] [CrossRef]
- Salem, H.F.; Kharshoum, R.M.; Abdel Hakim, L.F.; Abdelrahim, M.E. Edge activators and a polycationic polymer enhance the formulation of porous voriconazole nanoagglomerate for the use as a dry powder inhaler. J. Liposome Res. 2016, 26, 324–335. [Google Scholar] [CrossRef]
- Ahn, H.; Park, J.-H. Liposomal delivery systems for intestinal lymphatic drug transport. Biomater. Res. 2016, 20, 1–6. [Google Scholar] [CrossRef]
- Vishwakarma, N.; Jain, A.; Sharma, R.; Mody, N.; Vyas, S.; Vyas, S.P. Lipid-based nanocarriers for lymphatic transportation. AAPS PharmSciTech 2019, 20, 1–13. [Google Scholar] [CrossRef]
- Goel, S.; Ojha, N.K. Ashtang Ghrita: A noble Ayurveda drug for central nervous system. J. Ayurveda Holist. Med. (JAHM) 2015, 3, 18–24. [Google Scholar]
- Zaki, R.M.; Ibrahim, M.A.; Alshora, D.H.; El Ela, A.E.S.A. Formulation and Evaluation of Transdermal Gel Containing Tacrolimus-Loaded Spanlastics: In Vitro, Ex Vivo and In Vivo Studies. Polymers 2022, 14, 1528. [Google Scholar] [CrossRef] [PubMed]
- Salem, H.F.; Kharshoum, R.M.; Abou-Taleb, H.A.; Farouk, H.O.; Zaki, R.M. Fabrication and appraisal of simvastatin via tailored niosomal nanovesicles for transdermal delivery enhancement: In vitro and in vivo assessment. Pharmaceutics 2021, 13, 138. [Google Scholar] [CrossRef]
- Hosseinzadeh, H.; Atyabi, F.; Dinarvand, R.; Ostad, S.N. Chitosan–Pluronic nanoparticles as oral delivery of anticancer gemcitabine: Preparation and in vitro study. Int. J. Nanomed. 2012, 7, 1851. [Google Scholar]
- Habib, B.A.; Sayed, S.; Elsayed, G.M. Enhanced transdermal delivery of ondansetron using nanovesicular systems: Fabrication, characterization, optimization and ex-vivo permeation study-Box-Cox transformation practical example. Eur. J. Pharm. Sci. 2018, 115, 352–361. [Google Scholar] [CrossRef]
- De Sá, F.A.P.; Taveira, S.F.; Gelfuso, G.M.; Lima, E.M.; Gratieri, T. Liposomal voriconazole (VOR) formulation for improved ocular delivery. Colloids Surf. B Biointerfaces 2015, 133, 331–338. [Google Scholar] [CrossRef]
- Kuentz, M. Lipid-based formulations for oral delivery of lipophilic drugs. Drug Discov. Today Technol. 2012, 9, e97–e104. [Google Scholar] [CrossRef]
- Ezzeldin, E.; Asiri, Y.A.; Iqbal, M. Effects of green tea extracts on the pharmacokinetics of quetiapine in rats. Evid.-Based Complementary Altern. Med. 2015, 2015, 615285. [Google Scholar] [CrossRef]
- Gao, J.; Feng, M.; Swalve, N.; Davis, C.; Sui, N.; Li, M. Effects of repeated quetiapine treatment on conditioned avoidance responding in rats. Eur. J. Pharmacol. 2015, 769, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Thavasu, P.; Longhurst, S.; Joel, S.; Slevin, M.; Balkwill, F. Measuring cytokine levels in blood. Importance of anticoagulants, processing, and storage conditions. J. Immunol. Methods 1992, 153, 115–124. [Google Scholar] [CrossRef]
- Upadhyay, P.; Trivedi, J.; Pundarikakshudu, K.; Sheth, N. Direct and enhanced delivery of nanoliposomes of anti schizophrenic agent to the brain through nasal route. Saudi Pharm. J. 2017, 25, 346–358. [Google Scholar] [CrossRef] [PubMed]
- Belal, F.; Elbrashy, A.; Eid, M.; Nasr, J.J. Stability—Indicating HPLC method for the determination of quetiapine: Application to tablets and human plasma. J. Liq. Chromatogr. Relat. Technol. 2008, 31, 1283–1298. [Google Scholar] [CrossRef]
Formula Code | Independent Variables | Dependent Variables | ||||
---|---|---|---|---|---|---|
Glycerol conc (w/v%) (X1) | Cholesterol conc (w/v%) (X2) | VS (nm) (Y1) | PDI | ZP (mV) (Y2) | EE% (Y3) | |
G1 | 5.86 | 0.5 | 110.23 ± 6.48 | 0.248 ± 0.067 | −20.3 ± 0.92 | 28.31 ± 1.74 |
G2 | 10 | 0.2 | 130.25 ± 7.47 | 0.268 ± 0.142 | −21.8 ± 1.73 | 43.21 ± 3.62 |
G3 | 10 | 0.8 | 161.55 ± 10.72 | 0.174 ± 0.054 | −27.35 ± 2.61 | 54.42 ± 2.18 |
G4 | 20 | 0.08 | 115.42 ± 5.43 | 0.125 ± 0.021 | −19.1 ± 1.23 | 32.3 ± 1.26 |
G5 | 20 | 0.5 | 238.02 ± 4.73 | 0.402 ± 0.023 | −30.4 ± 2.42 | 66.2 ± 2.81 |
G6 | 20 | 0.92 | 283.56 ± 11.23 | 0.281 ± 0.126 | −34.4 ± 1.89 | 73.2 ± 1.34 |
G7 | 30 | 0.2 | 232.30 ± 7.82 | 0.265 ± 0.134 | −31.4 ± 2.26 | 65.79 ± 2.64 |
G8 | 30 | 0.8 | 321.51 ± 4.73 | 0.345 ± 0.084 | −37.7 ± 1.82 | 78.08 ± 3.21 |
G9 | 34.14 | 0.5 | 228.42 ± 6.29 | 0.352 ± 0.078 | −29.1 ± 2.35 | 64.3 ± 4.32 |
Dependent Variables | R2 | Adjusted R2 | Predicted R2 | Adequate Precision |
---|---|---|---|---|
Y1: VS (nm) | 0.8393 | 0.7858 | 0.6387 | 9.6576 |
Y2: ZP (mV) | 0.8245 | 0.7660 | 0.5859 | 9.1957 |
Y3: EE % | 0.7880 | 0.7174 | 0.5272 | 8.1482 |
Dependent Variable | Source | SS | Df | Mean Square | F Value | p-Value |
---|---|---|---|---|---|---|
Y1 | Model | 39,069.40 | 2 | 19,534.70 | 15.67 | 0.0041 |
X1 | 23,020.78 | 1 | 23,020.78 | 18.47 | 0.0051 | |
X2 | 16,048.63 | 1 | 16,048.63 | 12.87 | 0.0115 | |
Y2 | Model | 271.36 | 2 | 135.68 | 14.10 | 0.0054 |
X1 | 131.18 | 1 | 131.18 | 13.63 | 0.0102 | |
X2 | 140.18 | 1 | 140.18 | 14.56 | 0.0088 | |
Y3 | Model | 2006.51 | 2 | 1003.26 | 11.15 | 0.0095 |
X1 | 1179.46 | 1 | 1179.46 | 13.11 | 0.0111 | |
X2 | 827.05 | 1 | 827.05 | 9.19 | 0.0230 |
VS (nm) | ZP (mV) | EE% | |
---|---|---|---|
Predicted value | 298.88 | −35.997 | 78.08 |
Experimental value | 290.4 | −34.58 | 80.85 |
% Relative error | 2.84 | 3.94 | 3.55 |
Responses | Fresh | After 7 Days | After 30 Days |
---|---|---|---|
VS (nm) | 290.41 ± 10.43 | 292.93 ± 13.43 | 300.34 ± 12.38 |
ZP (mV) | −34.58 ± 2.13 | −34.24 ± 1.88 | −33.67 ± 1.65 |
EE% | 81.23 ± 2.43 | 80.85 ± 3.98 | 79.46 ± 3.01 |
Pharmacokinetic Parameters | Brain Data | Plasma Data | ||
---|---|---|---|---|
QTF Suspension | QTF Loaded GLSMs | QTF Suspension | QTF Loaded GLSMs | |
t1/2 (h) | 13.009 ± 2.59 | 12.835 ± 5.88 | 31.291 ± 3.783 | 47.859 ± 17.880 |
Tmax (h) | 4.000 ± 0.00 | 4.666 ± 1.15 | 2.666 ± 0.577 | 3.333 ± 0.577 |
Cmax (µg/mL) | 33.393 ± 4.33 | 49.806 ± 11.69 | 8.933 ± 2.656 | 14.953 ± 8.304 |
AUC0–24 (µg.h/mL) | 318.126 ± 13.82 | 489.753 ± 41.78 | 131.998 ± 12.020 | 178.406 ± 6.108 |
AUC0–∞ (µg.h/mL) | 496.187 ± 39.28 | 759.934 ±167.91 | 341.538 ± 19.888 | 614.155 ± 169.148 |
MRT (h) | 21.983 ± 4.19 | 21.949 ± 8.70 | 46.772 ± 6.694 | 69.418 ± 25.772 |
% Bioavailability Enhancement | 153.15 | 179.82 |
Independent Variables | Levels | |
---|---|---|
Low | High | |
Glycerol concentration w/v% (X1) | 10 | 30 |
Cholesterol concentration w/v% (X2) | 0.2 | 0.8 |
Dependent values (Responses) | Desirability | |
Vesicle size (Y1) | Minimize | |
Zeta potential (Y2) | Maximize | |
Entrapment efficiency (Y3) | Maximize |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaki, R.M.; Alfadhel, M.M.; Alossaimi, M.A.; Elsawaf, L.A.; Devanathadesikan Seshadri, V.; Almurshedi, A.S.; Yusif, R.M.; Said, M. Central Composite Optimization of Glycerosomes for the Enhanced Oral Bioavailability and Brain Delivery of Quetiapine Fumarate. Pharmaceuticals 2022, 15, 940. https://doi.org/10.3390/ph15080940
Zaki RM, Alfadhel MM, Alossaimi MA, Elsawaf LA, Devanathadesikan Seshadri V, Almurshedi AS, Yusif RM, Said M. Central Composite Optimization of Glycerosomes for the Enhanced Oral Bioavailability and Brain Delivery of Quetiapine Fumarate. Pharmaceuticals. 2022; 15(8):940. https://doi.org/10.3390/ph15080940
Chicago/Turabian StyleZaki, Randa Mohammed, Munerah M. Alfadhel, Manal A. Alossaimi, Lara Ayman Elsawaf, Vidya Devanathadesikan Seshadri, Alanood S. Almurshedi, Rehab Mohammad Yusif, and Mayada Said. 2022. "Central Composite Optimization of Glycerosomes for the Enhanced Oral Bioavailability and Brain Delivery of Quetiapine Fumarate" Pharmaceuticals 15, no. 8: 940. https://doi.org/10.3390/ph15080940
APA StyleZaki, R. M., Alfadhel, M. M., Alossaimi, M. A., Elsawaf, L. A., Devanathadesikan Seshadri, V., Almurshedi, A. S., Yusif, R. M., & Said, M. (2022). Central Composite Optimization of Glycerosomes for the Enhanced Oral Bioavailability and Brain Delivery of Quetiapine Fumarate. Pharmaceuticals, 15(8), 940. https://doi.org/10.3390/ph15080940