l-Arginine and Beetroot Extract Supplementation in the Prevention of Sarcopenia
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Design and Participants
4.2. Supplementation
4.3. Anthropometry
4.4. Physical Activity Tests
4.5. Training
4.6. Blood Analysis
4.7. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wozniak, A.C.; Anderson, J.E. The dynamics of the nitric oxide release-transient from stretched muscle cells. Int. J. Biochem. Cell Biol. 2009, 41, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Gielen, E.; O’Neill, T.W.; Pye, S.R.; Adams, J.E.; Wu, F.C.; Laurent, M.R.; Claessens, F.; Ward, K.A.; Boonen, S.; Bouillon, R.; et al. Endocrine determinants of incident sarcopenia in middle-aged and elderly European men. J. Cachexia Sarcopenia Muscle 2015, 6, 242–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Doherty, T.J. Invited review: Aging and sarcopenia. J. Appl. Physiol. 1985, 95, 1717–1727. [Google Scholar] [CrossRef] [Green Version]
- Pascual-Fernández, J.; Fernández-Montero, A.; Córdova-Martínez, A.; Pastor, D.; Martínez-Rodríguez, A.; Roche, E. Sarcopenia: Molecular pathways and potential targets for intervention. Int. J. Mol. Sci. 2020, 21, 8844. [Google Scholar] [CrossRef]
- Wroblewski, A.P.; Amati, F.; Smiley, M.A.; Goodpaster, B.; Wright, V. Chronic exercise preserves lean muscle mass in masters athletes. Phys. Sportsmed. 2011, 39, 172–178. [Google Scholar] [CrossRef] [Green Version]
- Tower, J. Programmed cell death in aging. Ageing Res. Rev. 2015, 23, 90–100. [Google Scholar] [CrossRef] [Green Version]
- Dickinson, J.M.; Volpi, E.; Rasmussen, B.B. Exercise and nutrition to target protein synthesis impairments in aging skeletal muscle. Exerc. Sport Sci. Rev. 2013, 41, 216–223. [Google Scholar] [CrossRef]
- Archer, J.D.; Vargas, C.C.; Anderson, J.E. Persistent and improved functional gain in mdx dystrophic mice after treatment with L-arginine and deflazacort. FASEB J. 2006, 20, 738–740. [Google Scholar] [CrossRef]
- Moncada, S.; Palmer, R.M.; Higgs, E.A. Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 1991, 43, 109–142. [Google Scholar]
- McArdle, F.; Pattwell, D.M.; Vasilaki, A.; McArdle, A.; Jackson, M.J. Intracellular generation of reactive oxygen species by contracting skeletal muscle cells. Free Radic. Biol. Med. 2005, 39, 651–657. [Google Scholar] [CrossRef]
- Chang, W.J.; Iannaccone, S.T.; Lau, K.S.; Masters, B.S.; McCabe, T.J.; McMillan, K.; Padre, R.C.; Spencer, M.J.; Tidball, J.G.; Stull, J.T. Neuronal nitric oxide synthase and dystrophin-deficient muscular dystrophy. Proc. Natl. Acad. Sci. USA 1996, 93, 9142–9147. [Google Scholar] [CrossRef] [Green Version]
- Buck, M.; Chojkier, M. Muscle wasting and dedifferentiation induced by oxidative stress in a murine model of cachexia is prevented by inhibitors of nitric oxide synthesis and antioxidants. EMBO J. 1996, 15, 1753–1765. [Google Scholar] [CrossRef]
- Di Marco, S.; Mazroui, R.; Dallaire, P.; Chittur, S.; Tenenbaum, S.A.; Radzioch, D.; Marette, A.; Gallouzi, I.E. NF-kappa B-mediated MyoD decay during muscle wasting requires nitric oxide synthase mRNA stabilization, HuR protein, and nitric oxide release. Mol. Cell. Biol. 2005, 25, 6533–6545. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.E. A role for nitric oxide in muscle repair: Nitric oxide-mediated activation of muscle satellite cells. Mol. Biol. Cell 2000, 11, 1859–1874. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, A.J.; Ho, H.V.; Le, C.Q.; Lin, P.S.; Bernstein, D.; Cooke, J.P. L-arginine enhances aerobic exercise capacity in association with augmented nitric oxide production. J. Appl. Physiol. 2001, 90, 933–938. [Google Scholar] [CrossRef]
- Long, J.H.; Lira, V.A.; Soltow, Q.A.; Betters, J.L.; Sellman, J.E.; Criswell, D.S. Arginine supplementation induces myoblast fusion via augmentation of nitric oxide production. J. Muscle Res. Cell Motil. 2006, 27, 577–584. [Google Scholar] [CrossRef]
- Rector, T.S.; Bank, A.J.; Mullen, K.A.; Tschumperlin, L.K.; Sih, R.; Pillai, K.; Kubo, S.H. Randomized, double-blind, placebo-controlled study of supplemental oral L-arginine in patients with heart failure. Circulation 1996, 93, 2135–2141. [Google Scholar] [CrossRef]
- Schaefer, A.; Piquard, F.; Geny, B.; Doutreleau, S.; Lampert, E.; Mettauer, B.; Lonsdorfer, J. L-arginine reduces exercise-induced increase in plasma lactate and ammonia. Int. J. Sports Med. 2002, 23, 403–407. [Google Scholar] [CrossRef]
- Bailey, S.J.; Winyard, P.G.; Vanhatalo, A.; Blackwell, J.R.; DiMenna, F.J.; Wilkerson, D.P.; Jones, A.M. Acute L-arginine supplementation reduces the O2 cost of moderate-intensity exercise and enhances high-intensity exercise tolerance. J. Appl. Physiol. 2010, 109, 1394–1403. [Google Scholar] [CrossRef] [Green Version]
- Souza, A.V.; Giolo, J.S.; Teixeira, R.R.; Vilela, D.D.; Peixoto, L.G.; Justino, A.B.; Caixeta, D.C.; Puga, G.M.; Espindola, F.S. Salivary and plasmatic antioxidant profile following continuous, resistance, and high-intensity interval exercise: Preliminary study. Oxid. Med. Cell. Longev. 2019, 2019, 5425021. [Google Scholar] [CrossRef] [PubMed]
- Castillo, L.; Chapman, T.E.; Sanchez, M.; Yu, Y.M.; Burke, J.F.; Ajami, A.M.; Vogt, J.; Young, V.R. Plasma arginine and citrulline kinetics in adults given adequate and arginine-free diets. Proc. Natl. Acad. Sci. USA 1993, 90, 7749–7753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, K.; Zhu, X.; Wang, Y.; Zheng, S.; Dong, G. Effect of aerobic exercise intervention on DDT degradation and oxidative stress in rats. Saudi J. Biol. Sci. 2017, 24, 664–671. [Google Scholar] [CrossRef] [PubMed]
- Bescós, R.; Gonzalez-Haro, C.; Pujol, P.; Drobnic, F.; Alonso, E.; Santolaria, M.L.; Ruiz, O.; Esteve, M.; Galilea, P. Effects of dietary L-Arginine intake on cardiorespiratory and metabolic adaptation in athletes. Int. J. Sport Nutr. Exerc. Metab. 2009, 19, 355–365. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.H.; Wu, C.L.; Chiang, C.W.; Lo, Y.W.; Tseng, H.F.; Chang, C.K. No effect of short-term arginine supplementation on nitric oxide production, metabolism and performance in intermittent exercise in athletes. J. Nutr. Biochem. 2008, 20, 462–468. [Google Scholar] [CrossRef]
- Bescós, R.; Rodríguez, F.A.; Iglesias, X.; Ferrer, M.D.; Iborra, E.; Pons, A. Acute administration of inorganic nitrate reduces VO2peak in endurance athletes. Med. Sci. Sports Exerc. 2011, 43, 1979–1986. [Google Scholar] [CrossRef] [Green Version]
- Figueroa, A.; Jaime, S.J.; Morita, M.; Gonzales, J.U.; Moinard, C. L-Citrulline Supports Vascular and Muscular Benefits of Exercise Training in Older Adults. Exerc. Sport Sci. Rev. 2020, 48, 133–139. [Google Scholar] [CrossRef]
- Larsen, F.J.; Weitzberg, E.; Lundberg, J.O.; Ekblom, B. Effects of dietary nitrate on oxygen cost during exercise. Acta Physiol. 2007, 191, 59–66. [Google Scholar] [CrossRef]
- Vanhatalo, A.; Bailey, S.J.; Blackwell, J.R.; DiMenna, F.J.; Pavey, T.G.; Wilkerson, D.P.; Benjamin, N.; Winyard, P.G.; Jones, A.M. Acute and chronic effects of dietary nitrate supplementation on blood pressure and the physiological responses to moderate-intensity and incremental exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 299, R1121–R1131. [Google Scholar] [CrossRef] [Green Version]
- Bescós, R.; Ferrer-Roca, V.; Galilea, P.A.; Roig, A.; Drobnic, F.; Sureda, A.; Martorell, M.; Cordova, A.; Tur, J.A.; Pons, A. Sodium nitrate supplementation does not enhance performance of endurance athletes. Med. Sci. Sports Exerc. 2012, 44, 2400–2409. [Google Scholar] [CrossRef]
- Capó, X.; Ferrer, M.D.; Olek, R.A.; Salaberry, E.; Suau, R.; Marí, B.; Llompart, I.; Tur, J.A.; Sureda, A.; Pons, A. Oral administration of sodium nitrate to metabolic syndrome patients attenuates mild inflammatory and oxidative responses to acute exercise. Antioxidants 2020, 9, 596. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, M.D.; Capó, X.; Reynés, C.; Quetglas, M.; Salaberry, E.; Tonolo, F.; Suau, R.; Marí, B.; Tur, J.A.; Sureda, A.; et al. Dietary sodium nitrate activates antioxidant and mitochondrial dynamics genes after moderate intensity acute exercise in metabolic syndrome patients. J. Clin. Med. 2021, 10, 2618. [Google Scholar] [CrossRef] [PubMed]
- Carter, S.J.; Gruber, A.H.; Raglin, J.S.; Baranauskas, M.N.; Coggan, A.R. Potential health effects of dietary nitrate supplementation in aging and chronic degenerative disease. Med. Hypotheses 2020, 141, 109732. [Google Scholar] [CrossRef] [PubMed]
- Lanhers, C.; Pereira, B.; Naughton, G.; Trousselard, M.; Lesage, F.X.; Dutheil, F. Creatine supplementation and upper limb strength performance: A systematic review and meta-analysis. Sports Med. 2017, 47, 163–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sureda, A.; Pons, A. Arginine and citrulline supplementation in sports and exercise: Ergogenic nutrients? Med. Sport Sci. 2012, 59, 18–28. [Google Scholar] [CrossRef]
- Bescós, R.; Sureda, A.; Tur, J.A.; Pons, A. The effect of nitric-oxide-related supplements on human performance. Sports Med. 2012, 42, 99–117. [Google Scholar] [CrossRef]
- Wallengren, O.; Bosaeus, I.; Frändin, K.; Lissner, L.; Falk Erhag, H.; Wetterberg, H.; Rydberg Sterner, T.; Rydén, L.; Rothenberg, E.; Skoog, I. Comparison of the 2010 and 2019 diagnostic criteria for sarcopenia by the European Working Group on Sarcopenia in Older People (EWGSOP) in two cohorts of Swedish older adults. BMC Geriatr. 2021, 21, 600. [Google Scholar] [CrossRef] [PubMed]
- Qaisar, R.; Karim, A.; Muhammad, T.; Shah, I.; Khan, J. Prediction of sarcopenia using a battery of circulating biomarkers. Sci. Rep. 2021, 11, 8632. [Google Scholar] [CrossRef]
- Kameda, M.; Teruya, T.; Yanagida, M.; Kondoh, H. Reduced uremic metabolites are prominent feature of sarcopenia, distinct from antioxidative markers for frailty. Aging 2021, 13, 20915–20934. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. European Working Group on Sarcopenia in Older People. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [Green Version]
- Chen, N.; He, X.; Feng, Y.; Ainsworth, B.E.; Liu, Y. Effects of resistance training in healthy older people with sarcopenia: A systematic review and meta-analysis of randomized controlled trials. Eur. Rev. Aging Phys. Act. 2021, 18, 23. [Google Scholar] [CrossRef] [PubMed]
- Bassel-Duby, R.; Olson, E.N. Signaling pathways in skeletal muscle remodeling. Annu. Rev. Biochem. 2006, 75, 19–37. [Google Scholar] [CrossRef] [Green Version]
- Jones, A.M.; Thompson, C.; Wylie, L.J.; Vanhatalo, A. Dietary nitrate and physical performance. Annu. Rev. Nutr. 2018, 38, 303–328. [Google Scholar] [CrossRef]
- Bailey, S.J.; Fulford, J.; Vanhatalo, A.; Winyard, P.G.; Blackwell, J.R.; DiMenna, F.J.; Wilkerson, D.P.; Benjamin, N.; Jones, A.M. Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans. J. Appl. Physiol. 2010, 109, 135–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, F.J.; Schiffer, T.A.; Borniquel, S.; Sahlin, K.; Ekblom, B.; Lundberg, J.O.; Weitzberg, E. Dietary inorganic nitrate improves mitochondrial efficiency in humans. Cell Metab. 2011, 13, 149–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petermann-Rocha, F.; Gray, S.R.; Pell, J.P.; Celis-Morales, C.; Ho, F.K. Biomarkers profile of people with sarcopenia: A cross-sectional analysis from UK Biobank. J. Am. Med. Dir. Assoc. 2020, 2017, 2017-e1. [Google Scholar] [CrossRef]
- Sawada, S.; Ozaki, H.; Natsume, T.; Nakano, D.; Deng, P.; Yoshihara, T.; Osawa, T.; Kobayashi, H.; Machida, S.; Naito, H. Serum albumin levels as a predictive biomarker for low-load resistance training programs’ effects on muscle thickness in the community-dwelling elderly Japanese population: Interventional study result. BMC Geriatr. 2021, 21, 464. [Google Scholar] [CrossRef]
- Tosato, M.; Marzetti, E.; Cesari, M.; Savera, G.; Miller, R.R.; Bernabei, R.; Landi, F.; Calvani, R. Measurement of muscle mass in sarcopenia: From imaging to biochemical markers. Aging Clin. Exp. Res. 2017, 29, 19–27. [Google Scholar] [CrossRef]
- Koh, T.J.; Tidball, J.G. Nitric oxide inhibits calpain-mediated proteolysis of talin in skeletal muscle cells. Am. J. Physiol. Cell Physiol. 2000, 279, C806–C812. [Google Scholar] [CrossRef] [Green Version]
- Smith, L.W.; Smith, J.D.; Criswell, D.S. Involvement of nitric oxide synthase in skeletal muscle adaptation to chronic overload. J. Appl. Physiol. 2002, 92, 2005–2011. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Jiao, H.; Zhao, J.; Wang, X.; Lin, H. L-Arginine enhances protein synthesis by phosphorylating mTOR (Thr 2446) in a nitric oxide-dependent manner in C2C12 cells. Oxid. Med. Cell. Longev. 2018, 2018, 7569127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flynn, N.E.; Shaw, M.H.; Becker, J.T. Amino acids in health and endocrine function. Adv. Exp. Med. Biol. 2020, 1265, 97–109. [Google Scholar] [CrossRef]
- Frandsen, U.; Höffner, L.; Betak, A.; Saltin, B.; Bangsbo, J.; Hellsten, Y. Endurance training does not alter the level of neuronal nitric oxide synthase in human skeletal muscle. J. Appl. Physiol. 2000, 89, 1033–1038. [Google Scholar] [CrossRef] [PubMed]
- Rudnick, J.; Püttmann, B.; Tesch, P.A.; Alkner, B.; Schoser, B.G.; Salanova, M.; Kirsch, K.; Gunga, H.C.; Schiffl, G.; Lück, G.; et al. Differential expression of nitric oxide synthases (NOS 1–3) in human skeletal muscle following exercise countermeasure during 12 weeks of bed rest. FASEB J. 2004, 18, 1228–1230. [Google Scholar] [CrossRef]
- McConell, G.K.; Bradley, S.J.; Stephens, T.J.; Canny, B.J.; Kingwell, B.A.; Lee-Young, R.S. Skeletal muscle nNOS mu protein content is increased by exercise training in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 293, R821–R828. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, S.; Gholamalizadeh, M.; Tabrizi, R.; Nowrouzi-Sohrabi, P.; Rastgoo, S.; Doaei, S. The effect of L-arginine supplementation on maximal oxygen uptake: A systematic review and meta-analysis. Physiol. Rep. 2021, 9, e14739. [Google Scholar] [CrossRef] [PubMed]
- Clifford, T.; Howatson, G.; West, D.J.; Stevenson, E.J. The potential benefits of red beetroot supplementation in health and disease. Nutrients 2015, 7, 2801–2822. [Google Scholar] [CrossRef] [PubMed]
- Oba, H.; Matsui, Y.; Arai, H.; Watanabe, T.; Iida, H.; Mizuno, T.; Yamashita, S.; Ishizuka, S.; Suzuki, Y.; Hiraiwa, H.; et al. Evaluation of muscle quality and quantity for the assessment of sarcopenia using mid-thigh computed tomography: A cohort study. BMC Geriatr. 2021, 21, 239. [Google Scholar] [CrossRef]
- Morishita, S.; Tsubaki, A.; Nakamura, M.; Nashimoto, S.; Fu, J.B.; Onishi, H. Rating of perceived exertion on resistance training in elderly subjects. Expert Rev. Cardiovasc. Ther. 2019, 17, 135–142. [Google Scholar] [CrossRef]
Parameter | Women | Men | * p |
---|---|---|---|
n | 22 | 44 | |
Age (years) | 63.8 ± 4.6 | 65.9 ± 6.4 | |
Weight (kg) | 65.8 ± 8.2 | 80.8 ± 13.0 | * 0.000 |
Height (cm) | 162 ± 7 | 172 ± 7 | * 0.000 |
Body mass index (kg/m2) | 25.2 ± 2.6 | 27.4 ± 3.6 | * 0.032 |
Fat (%) | 32.8 ± 5.5 | 25.0 ± 5.1 | * 0.000 |
Lean mass (kg) | 42.7 + 7.8 | 58.0 + 8.1 | |
Heart Rate (beats/min) | 69.3± 10.0 | 70.3 ± 13.1 | |
Systolic blood pressure (mmHg) | 127 ± 15 | 130 ± 21 | |
Diastolic blood pressure (mmHg) | 78.8 ± 11.7 | ± 7.8 |
Parameter | Moment | PL | ARG | BEET | ANOVA (p) |
---|---|---|---|---|---|
WOMEN (n) | 8 | 7 | 7 | ||
Weight (kg) | Initial | 64.7 ± 9.9 | 62.3 ± 4.9 | 68.1 ± 7.7 | |
Final | 64.5 ± 9.9 | 64.9 ± 4.8 | 69.9 ± 10.1 | ||
Fat (%) | Initial | 33.2 ± 6.0 | 29.9 ± 5.9 | 33.6 ± 5.1 | |
Final | 31.7 ± 5.4 | 30.8 ± 5.5 | 33.3 ± 5.6 | ||
Lean mass (kg) | Initial | 41.8 ± 6.8 | 42.6 ± 6.2 | 43.4 ± 5.9 | |
Final | 42.1 ± 7.3 | 43.1 ± 6.5 | 42.9 ± 6.2 | ||
Heart Rate | Initial | 72.3 ± 14.1 | 66.8 ± 13.1 | 68.2 ± 3.5 | |
(beats/min) | Final | 73.4 ± 12.8 | 60.0 ± 3.7* | 67.4 ± 3.6 | S (0.034) |
Systolic BP | Initial | 131 ± 11 | 121 ± 17 | 126 ± 17 | |
(mmHg) | Final | 136 ± 8 | 124 ± 15 | 127 ± 15 | |
Diastolic BP | Initial | 81.3 ± 12.7 | 71.8 ± 9.5 | 79.8 ± 11.5 | |
(mmHg) | Final | 82.9 ± 10.5 | 74.2 ± 10.4 | 81.2 ± 9.3 | |
MEN (n) | 14 | 15 | 15 | ||
Weight (kg) | Initial | 77.1 ± 8.9 | 81.7 ± 13.3 | 82.1 ± 14.1 | |
Final | 74.4 ± 5.9 | 72.2 ± 2.9 | 81.6 ± 14.5 | ||
Fat % | Initial | 20.5 ± 2.8 | 24.9 ± 5.4 | 25.9 ± 5.1 | |
Final | 20.9 ± 3.5 | 27.1 ± 8.1 | 24.1 ± 6.9 | ||
Lean mass (kg) | Initial | 58.4 ± 7.2 | 59.1 ± 6.9 | 58.0 ± 8.1 | |
Final | 56.2 ± 7.7 | 53.6 ± 7.1 | 58.5 ± 6.7 | ||
Heart Rate | Initial | 57.3 ± 12.1 | 71.7 ± 21.5 | 63.6 ± 9.5 | |
(beats/min) | Final | 56.0 ± 12.5 | 66.7 ± 5.1 | 66.9 ± 9.2 | |
Systolic BP | Initial | 133.6 ± 16.2 | 127 ± 14.4 | 141.6 ± 13.9 | |
(mmHg) | Final | 135.6 ± 12.3 | 131.9 ± 14.8 | 132.1 ± 20.4 | |
Diastolic BP | Initial | 81.0 ± 5.3 | 81.0 ± 4.4 | 84.4 ± 9.0 | |
(mmHg) | Final | 87.3 ± 3.8 | 71.3 ± 11.9 | 82.0 ± 10.9 |
Parameter | Women | Men | * p |
---|---|---|---|
Glucose (mg/dL) | 89.2 ± 1.9 | 89.1 ± 2.6 | |
Total protein (g/dL) | 7.2 ± 0.4 | 7.2 ± 0.3 | |
Urea (mg/dL) | 35.5 ± 10.8 | 42.5 ± 9.1 * | * 0.005 |
Creatinine (mg/dL) | 0.75 ± 0.12 | 0.84± 0.12 * | * 0.000 |
Urea/Creatinine | 47.8 ± 2.7 | 51.5 ± 3.6 | |
Uric acid (mg/dL) | 4.3 ± 0.6 | 5.2 ± 0.5 | |
Creatine kinase (mIU/L) | 107.0 ± 53.2 | 100.1 ± 39.4 |
Parameter | Moment | PL | ARG | BEET | ANOVA (p) |
---|---|---|---|---|---|
WOMEN | |||||
Glucose | Initial | 88.9 ± 12.1 | 87.6 ± 9.1 | 90.0 ± 9.6 | |
(mg/dL) | Final | 89.0 ± 10.9 | 81.8 ± 12.7 | 90.1 ± 9.7 | |
Total protein | Initial | 7.3 ± 0.4 | 7.2 ± 0.2 | 7.2 ± 0.4 | S (0.012) |
(g/dL) | Final | 7.4 ± 0.4 | 7.1 ± 0.1 | 6.7 ± 0.4 *# | S x T (0.023) |
Urea | Initial | 39.4 ± 11.2 | 40.0 ± 13.9 | 30.6 ± 7.7 * | S (0.006) |
(mg/dL) | Final | 41.3 ± 8.5 | 36.8 ± 7.1 | 31.6 ± 5.9 * | |
Creatinine | Initial | 0.8 ± 0.2 | 0.7 ± 0.1 | 0.8 ± 0.1 | S (0.040) |
(mg/dL) | Final | 0.7 ± 0.1 | 0.7 ± 0.1 | 0.9 ± 0.1 *# | S × T (0.035) |
Urea/Creatinine | Initial | 50.5 ± 10.3 | 58.9 ± 21.9 | 41.1 ± 11.4 # | S (0.000) |
Final | 58.8 ± 14.9 | 49.6 ± 6.3 | 36.9 ± 8.1 * | ||
Uric acid | Initial | 5.0 ± 1.2 | 4.0 ± 0.2 * | 3.8 ± 0.5 * | S (0.000) |
(mg/dL) | Final | 5.0 ± 0.8 | 4.2 ± 0.3 | 3.8 ± 0.8 * | |
Creatine kinase | Initial | 123.0 ± 58.1 | 123.0 ± 64.3 | 87.4 ± 43.0 | S (0.009) |
(mIU/L) | Final | 103.2 ± 43.0 | 214.1 ± 162.2 * | 84.4 ± 36.8 # | |
MEN | |||||
Glucose | Initial | 91.0 ± 5.2 | 84.0 ± 1.0 | 89.6 ± 6.6 | |
(mg/dL) | Final | 81.3 ± 8.1 | 81.3 ± 4.7 | 89.8 ± 12.2 | |
Total Protein | Initial | 6.8 ± 0.2 | 6.9 ± 0.1 | 7.3 ± 0.2 * | S (0.002) |
(g/dL) | Final | 7.1 ± 0.3 | 6.8 ± 0.2 | 7.1 ± 0.3 | |
Urea | Initial | 45.7 ± 13.8 | 44.0 ± 11.1 | 41.0 ± 7.2 | |
(mg/dL) | Final | 40.7 ± 3.5 | 44.0 ± 5.0 | 41.6 ± 7.6 | |
Creatinine | Initial | 0.8 ± 0.2 | 1.0 ± 0.1 | 0.8 ± 0.1 # | S (0.007) |
(mg/dL) | Final | 0.9 ± 0.1 | 1.1 ± 0.1 | 0.9 ± 0.1 | |
Urea/Creatinine | Initial | 57.1 ± 25.2 | 44.0 ± 16.3 | 50.8 ± 10.0 | |
Final | 48.1 ± 7.5 | 41.3 ± 4.7 | 46.8 ± 13.4 | ||
Uric acid | Initial | 5.1 ± 0.5 | 5.2 ± 0.4 | 5.3 ± 0.7 | |
(mg/dL) | Final | 5.7 ± 0.6 | 5.6 ± 0.8 | 5.6 ± 0.8 | |
Creatine Kinase | Initial | 135.0 ± 33.2 | 80.0 ± 30.3 | 96.0 ± 36.9 | |
(mIU/L) | Final | 133.1 ± 73.0 | 114.2 ± 59.1 | 130.3 ± 53.8 |
Parameter | Women | Men | * p |
---|---|---|---|
Strength (Kg) | 28.8 ± 8.0 | 44.5 ± 7.0 * | * 0.000 |
Endurance (m) | 794 ± 132 | 967 ± 211 * | * 0.000 |
Speed (s) | 2.46 ± 0.50 | 2.52 ± 0.44 | |
Squat (s) | 11.4 ± 1.8 | 11.0 ± 2.0 | |
SPPB index (range) | 11.3 ± 0.6 (11.1–11.5) | 11.5 ± 0.7 (11.2–11.8) |
Parameter | Moment | PL | ARG | BEET | ANOVA (p) |
---|---|---|---|---|---|
WOMEN | |||||
Strength (Kg) | Initial | 26.7 ± 4.2 | 27.8 ± 3.3 | 30.8 ± 10.9 | |
Final | 27.2 ± 2.7 | 28.8 ± 3.3 | 33.5 ± 9.6 | ||
Endurance (m) | Initial | 776 ± 131 | 883 ± 125 | 771 ± 132 | |
Final | 792 ± 142 | 912 ± 223 | 834 ± 142 | ||
Speed (s) | Initial | 2.27± 0.16 | 2.23 ± 0.10 | 2.70 ± 0.65 * | S (0.030) |
Final | 2.37 ± 0.26 | 2.19± 0.47 | 2.52 ± 0.48 | ||
Squat (s) | Initial | 12.5 ± 1.5 | 11.4 ± 1.25 | 10.7 ± 1.9 | |
Final | 11.1 ± 1.8 | 11.6 ± 3.7 | 10.4 ± 1.3 | ||
SPPB index | Initial | 11.1 ± 0.6 | 11.4 ± 0.5 | 11.4 ± 0.7 | |
(points) | Final | 11.3 ± 0.5 | 11.8 ± 0.4 | 11.7 ± 0.5 | |
MEN | |||||
Strength (Kg) | Initial | 44.0 ± 6.0 | 47.7 ± 2.51 | 43.0 ± 8.2 | |
Final | 48.3 ± 5.8 | 40.0 ± 12.1 | 44.4 ± 8.0 | ||
Endurance (m) | Initial | 1050 ± 229 | 1008 ± 343 | 914 ± 169 | |
Final | 1102 ± 226 | 949 ± 164 | 1049 ± 155 | ||
Speed (s) | Initial | 2.03± 0.02 | 2.18 ± 0.07 | 2.72 ± 0.41 *# | S (0.025) |
Final | 1.95 ± 0.26 | 2.27± 0.37 | 2.33 ± 0.54 *& | ||
Squat (s) | Initial | 8.9 ± 0.5 | 10.7 ± 1.8 | 11.6 ± 1.7 | |
Final | 9.4 ± 1.5 | 10.9 ± 1.2 | 10.1 ± 1.7 | ||
SPPB index | Initial | 12.0 ± 0.0 | 11.7 ± 0.6 | 11.3 ± 0.8 | |
(points) | Final | 87.3 ± 3.8 | 71.3 ± 11.9 | 82.0 ± 10.9 |
Session Structure | Time (min) | Protocol | Effort Level * |
---|---|---|---|
Warm-up | 10 | General mobility, light movements | 4 |
Balance | 5 | Standing and monopodal exercises | 3 |
Aerobic endurance | 10 | Walking, slow running | 7 |
Aerobic endurance | 20 | Overload exercises, with balls, dumbbells, rubber bands, steps | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Córdova-Martínez, A.; Caballero-García, A.; Bello, H.J.; Pons-Biescas, A.; Noriega, D.C.; Roche, E. l-Arginine and Beetroot Extract Supplementation in the Prevention of Sarcopenia. Pharmaceuticals 2022, 15, 290. https://doi.org/10.3390/ph15030290
Córdova-Martínez A, Caballero-García A, Bello HJ, Pons-Biescas A, Noriega DC, Roche E. l-Arginine and Beetroot Extract Supplementation in the Prevention of Sarcopenia. Pharmaceuticals. 2022; 15(3):290. https://doi.org/10.3390/ph15030290
Chicago/Turabian StyleCórdova-Martínez, Alfredo, Alberto Caballero-García, Hugo J. Bello, Antoni Pons-Biescas, David C. Noriega, and Enrique Roche. 2022. "l-Arginine and Beetroot Extract Supplementation in the Prevention of Sarcopenia" Pharmaceuticals 15, no. 3: 290. https://doi.org/10.3390/ph15030290
APA StyleCórdova-Martínez, A., Caballero-García, A., Bello, H. J., Pons-Biescas, A., Noriega, D. C., & Roche, E. (2022). l-Arginine and Beetroot Extract Supplementation in the Prevention of Sarcopenia. Pharmaceuticals, 15(3), 290. https://doi.org/10.3390/ph15030290