Graft Preservation Solution DuraGraft® Alleviates Vascular Dysfunction Following In Vitro Ischemia/Reperfusion Injury in Rats
Abstract
:1. Introduction
2. Results
2.1. Effect of DuraGraft® on Aortic Vasoreactivity Following Vascular IRI
2.1.1. Effects of DuraGraft® on Contractility
2.1.2. Effect of DuraGraft® on Endothelial Function
2.1.3. Effects of DuraGraft® on Smooth Muscle Relaxation
2.2. Effects of DuraGraft® on Aortic Intercellular Adhesion Molecule (ICAM)-1, Nitrotyrosine and Platelet Endothelial Cell Adhesion Molecule (PECAM)-1 Immunoreactivity after Vascular IRI
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Rat Model of Vascular IRI
4.2.1. Aortic Rings Preparation
4.2.2. Aortic Rings Conservation and Experimental Groups
4.2.3. Ex Vivo Measurement of Vascular Contraction-Relaxation in Organ Baths
4.3. Immunohistochemical Staining for ICAM-1, Nitrotyrosine and PECAM-1
4.4. Statistical Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Uva, M.S.; Neumann, F.-J.; Ahlsson, A.; Alfonso, F.; Banning, A.; Benedetto, U.; A Byrne, R.; Collet, J.-P.; Falk, V.; Head, S.J.; et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. J. Cardio-Thorac. Surg. 2018, 55, 4–90. [Google Scholar] [CrossRef] [Green Version]
- Carden, D.L.; Granger, D.N. Pathophysiology of ischaemia-reperfusion injury. J. Pathol. 2000, 190, 255–266. [Google Scholar] [CrossRef]
- Harskamp, R.E.; Lopes, R.D.; Baisden, C.E.; de Winter, R.J.; Alexander, J.H. Saphenous vein graft failure after coronary artery bypass surgery: Pathophysiology, management, and future directions. Ann. Surg. 2013, 257, 824–833. [Google Scholar] [CrossRef] [PubMed]
- Parolari, A.; Rubini, P.; Cannata, A.; Bonati, L.; Alamanni, F.; Tremoli, E.; Biglioli, P. Endothelial damage during myocardial preservation and storage. Ann. Thorac. Surg. 2002, 73, 682–690. [Google Scholar] [CrossRef]
- Wilbring, M.; Tugtekin, S.M.; Zatschler, B.; Ebner, A.; Reichenspurner, H.; Matschke, K.; Deussen, A. Even short-time storage in physiological saline solution impairs endothelial vascular function of saphenous vein grafts. Eur. J. Cardio-Thorac. Surg. 2011, 40, 811–815. [Google Scholar] [CrossRef] [PubMed]
- Caliskan, E.; Sandner, S.; Misfeld, M.; Aramendi, J.I.; Salzberg, S.P.; Choi, Y.-H.; Satishchandran, V.; Iyer, G.; Perrault, L.P.; Böning, A.; et al. A novel endothelial damage inhibitor for the treatment of vascular conduits in coronary artery bypass grafting: Protocol and rationale for the European, multicentre, prospective, observational DuraGraft registry. J. Cardiothorac. Surg. 2019, 14, 174. [Google Scholar] [CrossRef]
- Haime, M.; McLean, R.R.; Kurgansky, K.E.; Emmert, M.Y.; Kosik, N.; Nelson, C.; Gaziano, M.J.; Cho, K.; Gagnon, D.R. Relationship between intra-operative vein graft treatment with DuraGraft(R) or saline and clinical outcomes after coronary artery bypass grafting. Expert Rev. Cardiovasc. Ther. 2018, 16, 963–970. [Google Scholar] [CrossRef] [PubMed]
- Pachuk, C.J.; Rushton-Smith, S.K.; Emmert, M.Y. Intraoperative storage of saphenous vein grafts in coronary artery bypass grafting. Expert Rev. Med. Devices 2019, 16, 989–997. [Google Scholar] [CrossRef] [PubMed]
- Veres, G.; Schmidt, H.; Hegedűs, P.; Korkmaz-Icöz, S.; Radovits, T.; Loganathan, S.; Brlecic, P.; Li, S.; Karck, M.; Szabó, G. Is internal thoracic artery resistant to reperfusion injury? Evaluation of the storage of free internal thoracic artery grafts. J. Thorac. Cardiovasc. Surg. 2018, 156, 1460–1469. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.; Fischer, J.; Ley, K.; Sarembock, I.J. The role of inflammation in vascular injury and repair. J. Thromb. Haemost. 2003, 1, 1699–1709. [Google Scholar] [CrossRef] [PubMed]
- Jevnikar, A.M.; Wuthrich, R.P.; Takei, F.; Xu, H.-W.; Brennan, D.C.; Glimcher, L.H.; Rubin-Kelley, V.E. Differing regulation and function of ICAM-1 and class II antigens on renal tubular cells. Kidney Int. 1990, 38, 417–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koong, A.C.; Chen, E.Y.; Giaccia, A.J. Hypoxia causes the activation of nuclear factor κB through the phosphorylation of IκBα on tyrosine residues. Cancer Res. 1994, 54, 1425–1430. [Google Scholar] [PubMed]
- Gaudino, M.; Antoniades, C.; Benedetto, U.; Deb, S.; Di Franco, A.; Di Giammarco, G.; Fremes, S.; Glineur, D.; Grau, J.; He, G.-W.; et al. Mechanisms, Consequences, and Prevention of Coronary Graft Failure. Circulation 2017, 136, 1749–1764. [Google Scholar] [CrossRef] [PubMed]
- Veres, G.; Hegedűs, P.; Barnucz, E.; Schmidt, H.; Radovits, T.; Zöller, R.; Karck, M.; Szabó, G. TiProtec preserves endothelial function in a rat model. J. Surg. Res. 2016, 200, 346–355. [Google Scholar] [CrossRef] [PubMed]
- Korkmaz-Icöz, S.; Kocer, C.; Sayour, A.; Kraft, P.; Benker, M.; Abulizi, S.; Georgevici, A.-I.; Brlecic, P.; Radovits, T.; Loganathan, S.; et al. The Sodium-Glucose Cotransporter-2 Inhibitor Canagliflozin Alleviates Endothelial Dysfunction Following In Vitro Vascular Ischemia/Reperfusion Injury in Rats. Int. J. Mol. Sci. 2021, 22, 7774. [Google Scholar] [CrossRef] [PubMed]
Control | IR | IR + Duragraft | |
---|---|---|---|
PE (%) to KCl pD2 to PE | 80.9 ± 3.2 7.49 ± 0.08 | 443.4 ± 61.2 * 7.54 ± 0.08 | 116.3 ± 6.6 *,# 8.05 ± 0.15 *,# |
KCl (g) | 4.2 ± 0.1 | 1.3 ± 0.2 * | 2.6 ± 0.1 *,# |
Rmax to ACh (%) | 80,2 ± 2.2 | 47.8 ± 3.0 * | 72.9 ± 1.8 # |
pD2 to ACh | 7.39 ± 0.06 | 6.27 ± 0.20 * | 7.05 ± 0.12 # |
Rmax to SNP (%) | 100.0 ± 0.0 | 100.0 ± 0.0 | 94.0 ± 2.0 *# |
pD2 to SNP | 8.99 ± 0.16 | 8.68 ± 0.09 | 7.65 ± 0.21 *# |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korkmaz-Icöz, S.; Ballikaya, B.; Soethoff, J.; Kraft, P.; Sayour, A.A.; Radovits, T.; Loganathan, S.; Karck, M.; Szabó, G.; Veres, G. Graft Preservation Solution DuraGraft® Alleviates Vascular Dysfunction Following In Vitro Ischemia/Reperfusion Injury in Rats. Pharmaceuticals 2021, 14, 1028. https://doi.org/10.3390/ph14101028
Korkmaz-Icöz S, Ballikaya B, Soethoff J, Kraft P, Sayour AA, Radovits T, Loganathan S, Karck M, Szabó G, Veres G. Graft Preservation Solution DuraGraft® Alleviates Vascular Dysfunction Following In Vitro Ischemia/Reperfusion Injury in Rats. Pharmaceuticals. 2021; 14(10):1028. https://doi.org/10.3390/ph14101028
Chicago/Turabian StyleKorkmaz-Icöz, Sevil, Belinda Ballikaya, Jasmin Soethoff, Patricia Kraft, Alex Ali Sayour, Tamás Radovits, Sivakkanan Loganathan, Matthias Karck, Gábor Szabó, and Gábor Veres. 2021. "Graft Preservation Solution DuraGraft® Alleviates Vascular Dysfunction Following In Vitro Ischemia/Reperfusion Injury in Rats" Pharmaceuticals 14, no. 10: 1028. https://doi.org/10.3390/ph14101028
APA StyleKorkmaz-Icöz, S., Ballikaya, B., Soethoff, J., Kraft, P., Sayour, A. A., Radovits, T., Loganathan, S., Karck, M., Szabó, G., & Veres, G. (2021). Graft Preservation Solution DuraGraft® Alleviates Vascular Dysfunction Following In Vitro Ischemia/Reperfusion Injury in Rats. Pharmaceuticals, 14(10), 1028. https://doi.org/10.3390/ph14101028