The Role of Counter-Ions in Peptides—An Overview
Abstract
:1. Introduction
2. Influence of Counter-Ions in Peptides on the Physico-Chemical Properties
2.1. Counter-Ion Impact on Peptides Structure
2.2. Counter-Ions in High-Performance Liquid Chromatography (HPLC) Analysis and Purification of Peptides
3. Biological Activity of Peptides in the Form of Different Salts
3.1. Therapeutic Peptides
3.2. Peptide Counter-Ions: Implications in Peptide Formulations
3.2.1. Examples of Counter-Ion Influence on Peptide Formulation
3.2.2. Peptide Hydrophobic Ion Pairing
4. Counter-Ion Exchange and Measurement
4.1. Analytical Techniques for Counter-Ions Determination/Quantification
4.2. Methods of Counter-Ions Exchange
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
(N-Me) | methylated peptide bond |
ACE | angiotensin-converting-enzyme |
ACN | acetonitrile |
AcOH | acetic acid |
ACTH | adrenocorticotropic hormone |
API | active pharmaceutical ingredient |
ATP | adenosine triphosphate |
Aβ | β-amyloid |
C4D | capacitively coupled contactless conductivity detection |
C55-P | undecaprenyl-phosphate |
CCD | countercurrent distribution |
CDA | calcium-dependent antibiotic |
CE | capillary electrophoresis |
CRF | corticotropin-releasing factor |
CTAB | cetyltrimethylammonium bromide |
d-2Nal | 3-(2-naphthyl)-d-alanine |
d-3-(3′-pyridyl)Ala | 3-(3′-pyridyl)-d-alanine |
d-4-chloroPhe | 4-chloro-d-phenylalanine |
DAAA | diamylammonium acetate |
DBAA | dibutylamonium acetate |
d-Cit | d-citrulline |
DHAA | dihexylammonium acetate |
DPAA | dipropylammonium acetate |
DPC | dodecylphosphocholine |
ELSD | evaporative light scattering detection |
ESI-MS | electrospray ionization mass spectrometry |
FA | formic acid |
FDA | Food and Drug Administration |
FSH | follicle-stimulating hormone |
GnRH | gonadotropin releasing hormone |
h(1-Bn) | 1-benzyl-d-histidin |
HaCaT | immortalized human keratinocytes |
hCRH | human corticotropin-releasing hormone |
HFBA | heptafluorobutyric acid |
HILIC | hydrophilic interaction chromatography |
HIP | hydrophobic ion pairing |
HIPC | hydrophobic ion paired complex |
HIV | human immunodeficiency virus |
hR | homoarginine |
Hyp | hydroxyproline |
IC | ion chromatography |
ITP | isotachophoresis |
K(iPr) | N6-isopropyl-l-lysine |
LC-MS | liquid chromatography–mass spectrometry |
LH-RH | luteinizing hormone-releasing hormone |
LL-37 | human cathelicidin |
LOD | limit of detection |
MBC | minimal bactericidal concentrations |
MIC | minimal inhibitory concentrations |
MOG | myelin oligodendrocyte glycoprotein |
Mpa | 3-mercaptopropionic acid |
MS/MS | tandem mass spectrometry |
MSI-78 | pexiganan |
MT | micro titration |
NaOS | 1-octanesulfonate |
NFPA | nonafluoropenatnoic acid |
NMR | nuclear magnetic resonance |
NP-HPLC | normal-phase high-performance liquid chromatography |
oCRH | ovine corticotropin-releasing hormone |
Oic | (3S,7S)-octahydroindole-2-carboxylic acid |
PCL | polycaprolactone |
pE | pyroglutamic acid |
PEG | polyethylene glycol |
PFPA | pentafluoropropionic acid |
pS | O-phospho-l-serine |
rDNA | recombinant DNA |
rhIGF-1 | human insulin-like growth factor-1 |
RP-HPLC | reversed-phase high-performance liquid chromatography |
s(tBu) | O-tert-butyl-d-serine |
SAX | strong anion-exchange resins |
SCX | strong cation-exchange resins |
SDS | sodium dodecyl sulfate |
SEDDS | self-emulsifying drug delivery systems |
SLN | solid lipid nanoparticles |
SPPS | solid-phase peptide synthesis |
TBAHS | tetrabutylammonium hydrogen sulfate |
tBu | tert-butyl |
TFA | trifluoroacetic acid |
Thi | 3-(2-thienyl)-l-alanine |
Tic | 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid |
UV | ultraviolet |
WAX | weak anion exchange |
References
- Nielsen, D.S.; Shepherd, N.E.; Xu, W.; Lucke, A.J.; Stoermer, M.J.; Fairlie, D.P. Orally Absorbed Cyclic Peptides. Chem. Rev. 2017, 117, 8094–8128. [Google Scholar] [CrossRef] [PubMed]
- Otvos, L., Jr.; Wade, J.D. Current challenges in peptide-based drug discovery. Front. Chem. 2014, 2, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Recio, C.; Maione, F.; Iqbal, A.J.; Mascolo, N.; De Feo, V. The potential therapeutic application of peptides and peptidomimetics in cardiovascular disease. Front. Pharmacol. 2017, 7, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lau, J.L.; Dunn, M.K. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorganic Med. Chem. 2018, 26, 2700–2707. [Google Scholar] [CrossRef] [PubMed]
- Banting, F.G.; Best, C.H.; Collip, J.B.; Campbell, W.R.; Fletcher, A.A. Pancreatic Extracts in the Treatment of Diabetes Mellitus. Can. Med. Assoc. J. 1922, 12, 141–146. [Google Scholar]
- du Vigneaud, V.; Ressler, C.; Swan, J.M.; Roberts, C.W.; Katsoyannis, P.G. The Synthesis of Oxytocin. J. Am. Chem. Soc. 1954, 76, 3115–3121. [Google Scholar] [CrossRef]
- Lee, A.C.L.; Harris, J.L.; Khanna, K.K.; Hong, J.H. A comprehensive review on current advances in peptide drug development and design. Int. J. Mol. Sci. 2019, 20, 2383. [Google Scholar] [CrossRef] [Green Version]
- Lide, D.R. Handbook of Chemistry and Physics, 72nd ed.; CRC Press: Boca Raton, FL, USA, 1991. [Google Scholar]
- Pace, C.N.; Grimsley, G.R.; Scholtz, J.M. Protein ionizable groups: pK values and their contribution to protein stability and solubility. J. Biol. Chem. 2009, 284, 13285–13289. [Google Scholar] [CrossRef] [Green Version]
- Canel, E.; Gültepe, A.; Doğan, A.; Kilıç, E. The determination of protonation constants of some amino acids and their esters by potentiometry in different media. J. Solution Chem. 2006, 35, 5–19. [Google Scholar] [CrossRef]
- Wyman, J. The dielectric constant of mixtures of ethyl alcohol and water from −5 to 40°. J. Am. Chem. Soc. 1931, 53, 3292–3301. [Google Scholar] [CrossRef]
- Mol, A.R.; Castro, M.S.; Fontes, W. NetWheels: A web application to create high quality peptide helical wheel and net projections. bioRxiv 2018, 416347. [Google Scholar] [CrossRef] [Green Version]
- Johansson, J.; Gudmundsson, G.H.; Rottenberg, M.E.; Berndt, K.D.; Agerberth, B. Conformation-dependent Antibacterial Activity of the Naturally Occurring Human Peptide LL-37. J. Biol. Chem. 1998, 273, 3718–3724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porcelli, F.; Verardi, R.; Shi, L.; Henzler-Wildman, K.A.; Ramamoorthy, A.; Veglia, G. NMR Structure of the Cathelicidin-Derived Human Antimicrobial Peptide LL-37 in Dodecylphosphocholine Micelles. Biochemistry 2008, 47, 5565–5572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, R.P.; Girinath, P.; Ahmad, R. Effect of Lysine Side Chain Length on Intra-Helical Glutamate–Lysine Ion Pairing Interactions. Biochemistry 2007, 46, 10528–10537. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.P.; Wang, W.-R.; Girinath, P.; Yang, P.-A.; Ahmad, R.; Li, J.-H.; Hart, P.; Kokona, B.; Fairman, R.; Kilpatrick, C.; et al. Effect of Glutamate Side Chain Length on Intrahelical Glutamate–Lysine Ion Pairing Interactions. Biochemistry 2012, 51, 7157–7172. [Google Scholar] [CrossRef] [PubMed]
- Kuo, H.-T.; Yang, P.-A.; Wang, W.-R.; Hsu, H.-C.; Wu, C.-H.; Ting, Y.-T.; Weng, M.-H.; Kuo, L.-H.; Cheng, R.P. Effect of side chain length on intrahelical interactions between carboxylate- and guanidinium-containing amino acids. Amino Acids 2014, 46, 1867–1883. [Google Scholar] [CrossRef] [PubMed]
- Porcelli, F.; Buck-Koehntop, B.A.; Thennarasu, S.; Ramamoorthy, A.; Veglia, G. Structures of the dimeric and monomeric variants of magainin antimicrobial peptides (MSI-78 and MSI-594) in micelles and bilayers, determined by NMR spectroscopy. Biochemistry 2006, 45, 5793–5799. [Google Scholar] [CrossRef]
- Gaussier, H.; Morency, H.; Lavoie, M.C.; Subirade, M. Replacement of trifluoroacetic acid with HCl in the hydrophobic purification steps of pediocin PA-1: A structural effect. Appl. Environ. Microbiol. 2002, 68, 4803–4808. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Qu, J.; Li, W.; Zhang, Y.H.; Ren, Y.; Wang, D.P.; Wu, Y.D. Cyclic hexapeptide of D,L-α-aminoxy acids as a selective receptor for chloride ion. J. Am. Chem. Soc. 2002, 124, 12410–12411. [Google Scholar] [CrossRef]
- Kubik, S.; Kirchner, R.; Nolting, D.; Seidel, J. A molecular oyster: A neutral anion receptor containing two cyclopeptide subunits with a remarkable sulfate affinity in aqueous solution. J. Am. Chem. Soc. 2002, 124, 12752–12760. [Google Scholar] [CrossRef]
- Pajewski, R.; Ferdani, R.; Schlesinger, P.H.; Gokel, G.W. Chloride complexation by heptapeptides: Influence of C- and N-terminal sidechains and counterion. Chem. Commun. 2004, 10, 160–161. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yin, Z.; He, J.; Cheng, J.-P. Effective receptors for fluoride and acetate ions: Synthesis and binding study of pyrrole- and cystine-based cyclopeptido-mimetics. Tetrahedron Lett. 2007, 48, 6039–6043. [Google Scholar] [CrossRef]
- Schaly, A.; Belda, R.; García-España, E.; Kubik, S. Selective Recognition of Sulfate Anions by a Cyclopeptide-Derived Receptor in Aqueous Phosphate Buffer. Org. Lett. 2013, 15, 6238–6241. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Li, X.; Sha, Y.; Wu, Y.-D. A Cyclic Hexapeptide Comprising Alternating α-Aminoxy and α-Amino Acids is a Selective Chloride Ion Receptor. Chem. A Eur. J. 2005, 11, 3005–3009. [Google Scholar] [CrossRef] [PubMed]
- Kubik, S. Anion Recognition in Aqueous Media by Cyclopeptides and Other Synthetic Receptors. Acc. Chem. Res. 2017, 50, 2870–2878. [Google Scholar] [CrossRef] [PubMed]
- Elmes, R.B.P.; Jolliffe, K.A. Anion recognition by cyclic peptides. Chem. Commun. 2015, 51, 4951–4968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cross, K.J.; Huq, N.L.; Bicknell, W.; Reynolds, E.C. Cation-dependent structural features of beta-casein-(1-25). Biochem. J. 2001, 356, 277–286. [Google Scholar] [PubMed]
- Kleijn, L.H.J.; Oppedijk, S.F.; ’t Hart, P.; van Harten, R.M.; Martin-Visscher, L.A.; Kemmink, J.; Breukink, E.; Martin, N.I. Total Synthesis of Laspartomycin C and Characterization of Its Antibacterial Mechanism of Action. J. Med. Chem. 2016, 59, 3569–3574. [Google Scholar] [CrossRef] [PubMed]
- Borders, D.B.; Leese, R.A.; Jarolmen, H.; Francis, N.D.; Fantini, A.A.; Falla, T.; Fiddes, J.C.; Aumelas, A. Laspartomycin, an Acidic Lipopeptide Antibiotic with a Unique Peptide Core #. J. Nat. Prod. 2007, 70, 443–446. [Google Scholar] [CrossRef] [PubMed]
- Kleijn, L.H.J.; Vlieg, H.C.; Wood, T.M.; Sastre Toraño, J.; Janssen, B.J.C.; Martin, N.I. A High-Resolution Crystal Structure that Reveals Molecular Details of Target Recognition by the Calcium-Dependent Lipopeptide Antibiotic Laspartomycin C. Angew. Chem. Int. Ed. 2017, 56, 16546–16549. [Google Scholar] [CrossRef] [PubMed]
- Okur, H.I.; Hladílková, J.; Rembert, K.B.; Cho, Y.; Heyda, J.; Dzubiella, J.; Cremer, P.S.; Jungwirth, P. Beyond the Hofmeister Series: Ion-Specific Effects on Proteins and Their Biological Functions. J. Phys. Chem. B 2017, 121, 1997–2014. [Google Scholar] [CrossRef] [PubMed]
- Seyda Bucak, D.R. Colloid and Surface Chemistry: A Laboratory Guide for Exploration of the Nano World; CRC Press: Boca Raton, FL, USA, 2013; ISBN 1466553103. [Google Scholar]
- Xie, W.; Liu, C.; Yang, L.; Gao, Y. On the molecular mechanism of ion specific Hofmeister series. Sci. China Chem. 2014, 57, 36–47. [Google Scholar] [CrossRef]
- Rembert, K.B.; Paterová, J.; Heyda, J.; Hilty, C.; Jungwirth, P.; Cremer, P.S. Molecular Mechanisms of Ion-Specific Effects on Proteins. J. Am. Chem. Soc. 2012, 134, 10039–10046. [Google Scholar] [CrossRef] [PubMed]
- Green, A.A.; Hughes, W.L. [10] Protein fractionation on the basis of solubility in aqueous solutions of salts and organic solvents. Methods Enzymol. 1955, 1, 67–90. [Google Scholar] [CrossRef]
- Scopes, R.K. Protein Purification: Principles and Practice; Springer: New York, NY, USA, 1994; ISBN 978-0-387-94072-4. [Google Scholar]
- Paterová, J.; Rembert, K.B.; Heyda, J.; Kurra, Y.; Okur, H.I.; Liu, W.R.; Hilty, C.; Cremer, P.S.; Jungwirth, P. Reversal of the Hofmeister Series: Specific Ion Effects on Peptides. J. Phys. Chem. B 2013, 117, 8150–8158. [Google Scholar] [CrossRef]
- Kumar, T.K.; Samuel, D.; Jayaraman, G.; Srimathi, T.; Yu, C. The role of proline in the prevention of aggregation during protein folding in vitro. Biochem. Mol. Biol. Int. 1998, 46, 509–517. [Google Scholar]
- Lange, C.; Rudolph, R. Suppression of protein aggregation by L-arginine. Curr. Pharm. Biotechnol. 2009, 10, 408–414. [Google Scholar] [CrossRef]
- Schneider, C.P.; Shukla, D.; Trout, B.L. Arginine and the Hofmeister Series: The Role of Ion–Ion Interactions in Protein Aggregation Suppression. J. Phys. Chem. B 2011, 115, 7447–7458. [Google Scholar] [CrossRef] [Green Version]
- Kirkitadze, M.D.; Condron, M.M.; Teplow, D.B. Identification and characterization of key kinetic intermediates in amyloid β-protein fibrillogenesis. J. Mol. Biol. 2001, 312, 1103–1119. [Google Scholar] [CrossRef]
- Benseny-Cases, N.; Cócera, M.; Cladera, J. Conversion of non-fibrillar β-sheet oligomers into amyloid fibrils in Alzheimer’s disease amyloid peptide aggregation. Biochem. Biophys. Res. Commun. 2007, 361, 916–921. [Google Scholar] [CrossRef]
- Benseny-Cases, N.; Klementieva, O.; Cladera, J. In Vitro Oligomerization and Fibrillogenesis of Amyloid-beta Peptides; Springer: Dordrecht, The Netherlands, 2012; pp. 53–74. [Google Scholar]
- Ozkan, A.D.; Tekinay, A.B.; Guler, M.O.; Tekin, E.D. Effects of temperature, pH and counterions on the stability of peptide amphiphile nanofiber structures. RSC Adv. 2016, 6, 104201–104214. [Google Scholar] [CrossRef]
- Miravet, J.F.; Escuder, B.; Segarra-Maset, M.D.; Tena-Solsona, M.; Hamley, I.W.; Dehsorkhi, A.; Castelletto, V. Self-assembly of a peptide amphiphile: Transition from nanotape fibrils to micelles. Soft Matter 2013, 9, 3558–3564. [Google Scholar] [CrossRef] [Green Version]
- Niece, K.L.; Hartgerink, J.D.; Donners, J.J.J.M.; Stupp, S.I. Self-assembly combining two bioactive peptide-amphiphile molecules into nanofibers by electrostatic attraction. J. Am. Chem. Soc. 2003, 125, 7146–7147. [Google Scholar] [CrossRef] [PubMed]
- Toksoz, S.; Mammadov, R.; Tekinay, A.B.; Guler, M.O. Electrostatic effects on nanofiber formation of self-assembling peptide amphiphiles. J. Colloid Interface Sci. 2011, 356, 131–137. [Google Scholar] [CrossRef] [Green Version]
- Guo, D.; Mant, C.T.; Hodges, R.S. Effects of ion-pairing reagents on the prediction of peptide retention in reversed-phase high-resolution liquid chromatography. J. Chromatogr. A 1987, 386, 205–222. [Google Scholar] [CrossRef]
- Perrin, D.D. Dissociation Constants of Inorganic Acids and Bases in Aqueous Solution; Butterworths: London, UK, 1965. [Google Scholar]
- Chen, Y.; Mant, C.T.; Hodges, R.S. Selectivity differences in the separation of amphipathic alpha-helical peptides during reversed-phase liquid chromatography at pHs 2.0 and 7.0: Effects of different packings, mobile phase conditions and temperature. J. Chromatogr. A 2004, 1043, 99–111. [Google Scholar] [CrossRef]
- Åsberg, D.; Weinmann, A.L.; Leek, T.; Lewis, R.J.; Klarqvist, M.; Leśko, M.; Kaczmarski, K.; Samuelsson, J.; Fornstedt, T. The importance of ion-pairing in peptide purification by reversed-phase liquid chromatography. J. Chromatogr. A 2017, 1496, 80–91. [Google Scholar] [CrossRef]
- Chen, Y.; Mehok, A.R.; Mant, C.T.; Hodges, R.S. Optimum concentration of trifluoroacetic acid for reversed-phase liquid chromatography of peptides revisited. J. Chromatogr. A 2004, 1043, 9–18. [Google Scholar] [CrossRef]
- Bobály, B.; Tóth, E.; Drahos, L.; Zsila, F.; Visy, J.; Fekete, J.; Vékey, K. Influence of acid-induced conformational variability on protein separation in reversed phase high performance liquid chromatography. J. Chromatogr. A 2014, 1325, 155–162. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Barnard, J.; Spitznagel, T.M.; Krishnamurthy, R. Protein Covalent Dimer Formation Induced by Reversed-Phase HPLC Conditions. J. Pharm. Sci. 2013, 102, 842–851. [Google Scholar] [CrossRef]
- Bröhl, A.; Albrecht, B.; Zhang, Y.; Maginn, E.; Giernoth, R. Influence of Hofmeister Ions on the Structure of Proline-Based Peptide Models: A Combined Experimental and Molecular Modeling Study. J. Phys. Chem. B 2017, 121, 2062–2072. [Google Scholar] [CrossRef] [PubMed]
- Trabelsi, H.; Bouabdallah, S.; Sabbah, S.; Raouafi, F.; Bouzouita, K. Study of the cis–trans isomerization of enalapril by reversed-phase liquid chromatography. J. Chromatogr. A 2000, 871, 189–199. [Google Scholar] [CrossRef]
- Šalamoun, J.; Šlais, K. Elimination of peak splitting in the liquid chromatography of the proline-containing drug enalapril maleate. J. Chromatogr. A 1991, 537, 249–257. [Google Scholar] [CrossRef]
- Shibue, M.; Mant, C.T.; Hodges, R.S. The perchlorate anion is more effective than the trifluoroacetate anion as an ion-pairing reagent for reversed-phase chromatography of peptides. J. Chromatogr. A 2005, 1080, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Tarafder, A.; Aumann, L.; Morbidelli, M. The role of ion-pairing in peak deformations in overloaded reversed-phase chromatography of peptides. J. Chromatogr. A 2010, 1217, 7065–7073. [Google Scholar] [CrossRef]
- García, M.C. The effect of the mobile phase additives on sensitivity in the analysis of peptides and proteins by high-performance liquid chromatography–electrospray mass spectrometry. J. Chromatogr. B 2005, 825, 111–123. [Google Scholar] [CrossRef]
- Shibue, M.; Mant, C.T.; Hodges, R.S. Effect of anionic ion-pairing reagent concentration (1–60 mM) on reversed-phase liquid chromatography elution behaviour of peptides. J. Chromatogr. A 2005, 1080, 58–67. [Google Scholar] [CrossRef] [Green Version]
- Furuki, K.; Toyo’oka, T. Retention of glycopeptides analyzed using hydrophilic interaction chromatography is influenced by charge and carbon chain length of ion-pairing reagent for mobile phase. Biomed. Chromatogr. 2017, 31, e3988. [Google Scholar] [CrossRef]
- Prakash, A.S. The counter ion: Expanding excipient functionality. J. Excip. Food Chem. 2011, 2, 28–40. [Google Scholar]
- Roux, S.; Zékri, E.; Rousseau, B.; Paternostre, M.; Cintrat, J.-C.; Fay, N. Elimination and exchange of trifluoroacetate counter-ion from cationic peptides: A critical evaluation of different approaches. J. Pept. Sci. 2008, 14, 354–359. [Google Scholar] [CrossRef]
- Andrushchenko, V.V.; Vogel, H.J.; Prenner, E.J. Optimization of the hydrochloric acid concentration used for trifluoroacetate removal from synthetic peptides. J. Pept. Sci. 2007, 13, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Cornish, J.; Callon, K.E.; Lin, C.Q.; Xiao, C.L.; Mulvey, T.B.; Cooper, G.J.; Reid, I.R. Trifluoroacetate, a contaminant in purified proteins, inhibits proliferation of osteoblasts and chondrocytes. Am. J. Physiol. 1999, 277, E779–E783. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.G.; Ling, Y.H.; McClure, G.D.; Tseng, M.T. Effects of trifluoroacetic acid, a halothane metabolite, on c6 glioma cells. J. Toxicol. Environ. Health 1990, 31, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Tipps, M.E.; Iyer, S.V.; John Mihic, S. Trifluoroacetate is an allosteric modulator with selective actions at the glycine receptor. Neuropharmacology 2012, 63, 368–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, J.; Kim, N.; Kim, E. Trifluoroacetic acid activates ATP-sensitive K+ channels in rabbit ventricular myocytes. Biochem. Biophys. Res. Commun. 2001, 285, 1136–1142. [Google Scholar] [CrossRef]
- Boullerne, A.I.; Polak, P.E.; Braun, D.; Sharp, A.; Pelligrino, D.; Feinstein, D.L. Effects of peptide fraction and counter ion on the development of clinical signs in experimental autoimmune encephalomyelitis. J. Neurochem. 2014, 129, 696–703. [Google Scholar] [CrossRef] [Green Version]
- You, Q.; Cheng, L.; Ju, C. Generation of T cell responses targeting the reactive metabolite of halothane in mice. Toxicol. Lett. 2010, 194, 79–85. [Google Scholar] [CrossRef] [Green Version]
- You, Q.; Cheng, L.; Reilly, T.P.; Wegmann, D.; Ju, C. Role of neutrophils in a mouse model of halothane-induced liver injury. Hepatology 2006, 44, 1421–1431. [Google Scholar] [CrossRef]
- Trudell, J.R.; Ardies, C.M.; Anderson, W.R. Antibodies raised against trifluoroacetyl-protein adducts bind to N-trifluoroacetyl-phosphatidylethanolamine in hexagonal phase phospholipid micelles. J. Pharmacol. Exp. Ther. 1991, 257, 657–662. [Google Scholar]
- Vlieghe, P.; Lisowski, V.; Martinez, J.; Khrestchatisky, M. Synthetic therapeutic peptides: Science and market. Drug Discov. Today 2010, 15, 40–56. [Google Scholar] [CrossRef]
- Greber, K.E.; Dawgul, M. Antimicrobial Peptides Under Clinical Trials. Curr. Top. Med. Chem. 2017, 17, 620–628. [Google Scholar] [CrossRef] [PubMed]
- Sikora, K.; Jaśkiewicz, M.; Neubauer, D.; Bauer, M.; Bartoszewska, S.; Barańska-Rybak, W.; Kamysz, W. Counter-ion effect on antistaphylococcal activity and cytotoxicity of selected antimicrobial peptides. Amino Acids 2018, 50, 609–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greber, K.E.; Dawgul, M.; Kamysz, W.; Sawicki, W. Cationic Net Charge and Counter Ion Type as Antimicrobial Activity Determinant Factors of Short Lipopeptides. Front. Microbiol. 2017, 8, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food and Drug Administration (FDA) Drug Database. Available online: https://www.accessdata.fda.gov/scripts/cder/daf/ (accessed on 2 December 2020).
- Usmani, S.S.; Bedi, G.; Samuel, J.S.; Singh, S.; Kalra, S.; Kumar, P.; Ahuja, A.A.; Sharma, M.; Gautam, A.; Raghava, G.P.S. THPdb: Database of FDA-approved peptide and protein therapeutics. PLoS ONE 2017, 12, e0181748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Drug Bank. The DrugBank Database. Available online: https://go.drugbank.com/ (accessed on 2 December 2020).
- Craig, L.C.; Sogn, J. Isolation of antibiotics by countercurrent distribution. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1975; Volume 43, pp. 320–346. ISBN 9788578110796. [Google Scholar]
- Hill, R.J. Separation of peptides by countercurrent distribution. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1967; Volume I1, pp. 378–386. [Google Scholar]
- Laidler, P.; Farkas, I. Hydrochloride Salt of Peptide and Its Use in Combination with Other Peptides for Immunotherapy. WIPO Patent WO/2013/167897, 14 November 2013. [Google Scholar]
- CMO Selection Criteria—Contract Pharma. Available online: https://www.contractpharma.com/issues/2017-05-01/view_features/cmo-selection-criteria/ (accessed on 14 April 2020).
- Beck, A.; Bussat, M.; Goetsch, L.; Aubry, J.; Champion, T.; Julien, E.; Haeuw, J. Stability and CTL activity of N-terminal glutamic acid containing peptides. J. Pept. Res. 2001, 57, 528–538. [Google Scholar] [CrossRef] [PubMed]
- Johnsson, M.; Joabsson, F.; Nistor, C.; Thuresson, K.; Tiberg, F. Peptide Slow-Release Formulations. U.S. Patent US14/598,852, 16 January 2015. [Google Scholar]
- Li, Y.; Chien, B. Pharmaceutical Compositions with Enhanced Stability. WIPO Patent WO2007/084, 5 November 2010. [Google Scholar]
- Cormier, M.; Ameri, M. Therapeutic Peptide Formulations with Improved Stability. U.S. Patent US20060188555A1, 19 January 2006. [Google Scholar]
- Deghenghi, R.; Boutignon, F. Sustained Release of Microcrystalline Peptide Suspensions. U.S. Patent US20110312889A1, 9 April 2013. [Google Scholar]
- Deasy, P.B.; Loughman, T.C. Transdermal Administration of Peptides. U.S. Patent 13/637,244, 4 April 2013. [Google Scholar]
- Botti, P.; Tchertchian, S. Mucosal Delivery Compositions Comprising a Peptide Complexed with a Crown Compound and/or a Counter Ion. WIPO Patent WO/2011/064316, 3 June 2011. [Google Scholar]
- Adjei, A.L.; Johnson, E.S.; Kasterson, J.W. LHRH Analog Formulations. U.S. Patent US4897256A, 30 January 1990. [Google Scholar]
- Meyer, J.D.; Manning, M.C. Hydrophobic ion pairing Altering the solubility properties of biomolecules. Pharm. Res. 1998, 15, 188–193. [Google Scholar] [CrossRef]
- Dumont, C.; Bourgeois, S.; Fessi, H.; Jannin, V. Lipid-based nanosuspensions for oral delivery of peptides, a critical review. Int. J. Pharm. 2018, 541, 117–135. [Google Scholar] [CrossRef]
- Gallarate, M.; Battaglia, L.; Peira, E.; Trotta, M. Peptide-loaded solid lipid nanoparticles prepared through coacervation technique. Int. J. Chem. Eng. 2011, 2011. [Google Scholar] [CrossRef] [Green Version]
- Karamanidou, T.; Karidi, K.; Bourganis, V.; Kontonikola, K.; Kammona, O.; Kiparissides, C. Effective incorporation of insulin in mucus permeating self-nanoemulsifying drug delivery systems. Eur. J. Pharm. Biopharm. 2015, 97, 223–229. [Google Scholar] [CrossRef]
- Hintzen, F.; Perera, G.; Hauptstein, S.; Müller, C.; Laffleur, F.; Bernkop-Schnürch, A. In Vivo evaluation of an oral self-microemulsifying drug delivery system (SMEDDS) for leuprorelin. Int. J. Pharm. 2014, 472, 20–26. [Google Scholar] [CrossRef]
- Zupančič, O.; Leonaviciute, G.; Lam, H.T.; Partenhauser, A.; Podričnik, S.; Bernkop-Schnürch, A. Development and In Vitro evaluation of an oral SEDDS for desmopressin. Drug Deliv. 2016, 23, 2074–2083. [Google Scholar] [CrossRef] [Green Version]
- Griesser, J.; Hetényi, G.; Moser, M.; Demarne, F.; Jannin, V.; Bernkop-Schnürch, A. Hydrophobic ion pairing: Key to highly payloaded self-emulsifying peptide drug delivery systems. Int. J. Pharm. 2017, 520, 267–274. [Google Scholar] [CrossRef]
- Hetényi, G.; Griesser, J.; Moser, M.; Demarne, F.; Jannin, V.; Bernkop-Schnürch, A. Comparison of the protective effect of self-emulsifying peptide drug delivery systems towards intestinal proteases and glutathione. Int. J. Pharm. 2017, 523, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.D.; Rummaneethorn, P.; Ristroph, K.D.; Prud’Homme, R.K. Hydrophobic Ion Pairing of Peptide Antibiotics for Processing into Controlled Release Nanocarrier Formulations. Mol. Pharm. 2018, 15, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Rocheleau, M.-J. Analytical Methods for Determination of Counter-ions in Pharmaceutical Salts. Curr. Pharm. Anal. 2008, 4, 25–32. [Google Scholar] [CrossRef]
- Cao, L.; Li, X.; Fan, L.; Zheng, L.; Wu, M.; Zhang, S.; Huang, Q. Determination of Inorganic Cations and Anions in Chitooligosaccharides by Ion Chromatography with Conductivity Detection. Mar. Drugs 2017, 15, 51. [Google Scholar] [CrossRef] [Green Version]
- Mai, T.D.; Hauser, P.C. Simultaneous separations of cations and anions by capillary electrophoresis with contactless conductivity detection employing a sequential injection analysis manifold for flexible manipulation of sample plugs. J. Chromatogr. A 2012, 1267, 266–272. [Google Scholar] [CrossRef]
- Merli, D.; Profumo, A.; Dossi, C. An analytical method for Fe(II) and Fe(III) determination in pharmaceutical grade iron sucrose complex and sodium ferric gluconate complex. J. Pharm. Anal. 2012, 2, 450–453. [Google Scholar] [CrossRef] [Green Version]
- Sarzanini, C. Recent developments in ion chromatography. J. Chromatogr. A 2002, 956, 3–13. [Google Scholar] [CrossRef]
- Saari-Nordhaus, R.; Anderson, J.M.J. Recent advances in ion chromatography suppressor improve anion separation and detection. J. Chromatogr. A 2002, 956, 15–22. [Google Scholar] [CrossRef]
- Kaiser, E.; Rohrer, J. Determination of residual trifluoroacetate in protein purification buffers and peptide preparations by ion chromatography. J. Chromatogr. A 2004, 1039, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Dovletoglou, A. Practical capillary electrophoresis method for the quantitation of the acetate counter-ion in a novel antifungal lipopeptide. J. Chromatogr. A 1997, 763, 279–284. [Google Scholar] [CrossRef]
- Mrozik, W.; Markowska, A.; Guzik, Ł.; Kraska, B.; Kamysz, W. Determination of counter-ions in synthetic peptides by ion chromatography, capillary isotachophoresis and capillary electrophoresis. J. Pept. Sci. 2012, 18, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Hiissa, T.; Sirén, H.; Kotiaho, T.; Snellman, M.; Hautojärvi, A. Quantification of anions and cations in environmental water samples: Measurements with capillary electrophoresis and indirect-UV detection. J. Chromatogr. A 1999, 853, 403–411. [Google Scholar] [CrossRef]
- Pacáková, V.; Štulík, K. Capillary electrophoresis of inorganic anions and its comparison with ion chromatography. J. Chromatogr. A 1997, 789, 169–180. [Google Scholar] [CrossRef]
- Voeten, R.L.C.; Ventouri, I.K.; Haselberg, R.; Somsen, G.W. Capillary Electrophoresis: Trends and Recent Advances. Anal. Chem. 2018, 90, 1464–1481. [Google Scholar] [CrossRef] [Green Version]
- Valenti, L.E.; Paci, M.B.; De Pauli, C.P.; Giacomelli, C.E. Infrared study of trifluoroacetic acid unpurified synthetic peptides in aqueous solution: Trifluoroacetic acid removal and band assignment. Anal. Biochem. 2011, 410, 118–123. [Google Scholar] [CrossRef]
- Qasem, R.J.; Farh, I.K.; Al Essa, M.A. A novel LC-MS/MS method for the quantitative measurement of the acetate content in pharmaceutical peptides. J. Pharm. Biomed. Anal. 2017, 146, 354–360. [Google Scholar] [CrossRef]
- Vergote, V.; Burvenich, C.; Van de Wiele, C.; De Spiegeleer, B. Quality specifications for peptide drugs: A regulatory-pharmaceutical approach. J. Pept. Sci. 2009, 15, 697–710. [Google Scholar] [CrossRef]
- Nogueira, R.; Lämmerhofer, M.; Lindner, W. Alternative high-performance liquid chromatographic peptide separation and purification concept using a new mixed-mode reversed-phase/weak anion-exchange type stationary phase. J. Chromatogr. A 2005, 1089, 158–169. [Google Scholar] [CrossRef]
- Pack, B.W.; Risley, D.S. Evaluation of a monolithic silica column operated in the hydrophilic interaction chromatography mode with evaporative light scattering detection for the separation and detection of counter-ions. J. Chromatogr. A 2005, 1073, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Sarmini, K.; Kenndler, E. Ionization constants of weak acids and bases in organic solvents. J. Biochem. Biophys. Methods 1999, 38, 123–137. [Google Scholar] [CrossRef]
- Eckert, F.; Leito, I.; Kaljurand, I.; Kütt, A.; Klamt, A.; Diedenhofen, M. Prediction of acidity in acetonitrile solution with COSMO-RS. J. Comput. Chem. 2009, 30, 799–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sikora, K.; Neubauer, D.; Jaśkiewicz, M.; Kamysz, W. Citropin 1.1 Trifluoroacetate to Chloride Counter-Ion Exchange in HCl-Saturated Organic Solutions: An Alternative Approach. Int. J. Pept. Res. Ther. 2017. [Google Scholar] [CrossRef] [Green Version]
- Tovi, A.; Eidelman, C.; Shushan, S.; Elster, S.; Alon, H.; Ivchenko, A.; Butilca, G.-M.; Zaovi, G. Counterion Exchange Process for Peptides. WIPO Patent WO2005US35868, 4 October 2005. [Google Scholar]
- Lloyd, L.; Boguszewski, P. Application Note SI-02449 Freebasing of Peptide Salts and the Removal of Acidic Ion-Pairing Reagents from Fractions after HPLC Purification. In Peptides; Varian, Inc.: Palo Alto, CA, USA, 2010; pp. 1–2. [Google Scholar]
- Houbiers, M.C.; Spruijt, R.B.; Demel, R.A.; Hemminga, M.A.; Wolfs, C.J.A.M. Spontaneous insertion of gene 9 minor coat protein of bacteriophage M13 in model membranes. Biochim. Biophys. Acta Biomembr. 2001, 1511, 309–316. [Google Scholar] [CrossRef] [Green Version]
Name | Sequence | Counter-Ion | Chain Length | Brand Names | Company | Route of Administration | Target/Application |
---|---|---|---|---|---|---|---|
Eptifibatide | c(Mpa-hRGDWPC)NH2 | Acetate | 8 | INTEGRILIN® | Schering-Plough/Essex | Intravenous injection | Lutropin-choriogonadotropic hormone receptor, follicle-stimulating hormone receptor |
Leuprolide | PHWSYLLR-NH2 | Acetate | 8 | Eligard®, Enantone®, Lupron®, Memryte® | Atrix Labs, Takeda, Abott, Curaxis | Subcutaneous injection | Analogue of gonadotropin releasing hormone (GnRH) |
Desmopressin | c(Mpa-YFQNC)PrG-NH2 | Acetate | 8 | Nocdurna® | Ferring Pharmaceuticals, Inc. | Sublingual tablets | Agonist of vasopressin V1a, V1b V2 receptors |
Vasopressin | c(CYFQNC)PRG-NH2 | Acetate | 9 | Pitressin® | JHP Pharmaceuticals | Intramuscular, subcutaneous injection | Agonist of vasopressin V1a, V1b V2 receptors |
Oxytocin | c(CYIQNC)PRG-NH2 | Acetate | 9 | Pitocin® | JHP Pharmaceuticals | Intravenous infusion | Agonist of interferon alpha/beta receptor 1 and 2 |
Buserelin | pEHWSYs(tBu)LRP-NHEt | Acetate | 9 | Suprecur® | Sanofi-Aventis | Subcutaneous injection | Agonist of lutropin-choriogonadotropic hormone receptor and GnRH receptor |
Abarelix | Ac-d-2Nal-d-4-chloroPhe-d -3-(3′ -pyridyl)AS-N(Me)YLK(iPr)Pa-NH2 | Acetate | 10 | PlenaxisT® | Praecis Pharms | Intramuscular injection | Palliative treatment of men with advanced prostate cancer. GnRH antagonist that reduces the serum testosterone. |
Cetrorelix | Ac-d-2Nal-d-4-chloroPhe-d-3-(3’ -pyridyl)Ala-SY-d-Cit-LRPa-NH2 | Acetate | 10 | Cetrotide® | Merck Serono | Subcutaneous injection | GnRH antagonistic activity. It competes with natural GnRH for binding to membrane receptors on pituitary cells and thus controls the release of LH and FSH in a dose-dependent manner |
Goserelin | pEHWSYs(tBu)LRP-NHNHCONH2 | Acetate | 10 | ZOLADEX® | AstraZeneca | Subcutaneus administration | GnRH agonist for the management of locally confined carcinoma of the prostate or palliative treatment of advanced carcinoma |
Histrelin | pEHWSYh(1-Bn)LRP-NHEt | Acetate | 10 | Vantas® | Endo Pharmaceuticals | Subcutaneus administration | LH-RH agonist, acts as a potent inhibitor of gonadotropin secretion, implant consists of a 50-mg histrelin acetate drug core inside a nonbiodegradable, 3 cm by 3.5 mm cylindrically shaped hydrogel reservoir |
Icatibant | rRP-Hyp-G-Thi-S-d-Tic-Oic-R | Acetate | 10 | Firazyr® | Jerini AG | Subcutaneous injection | Treatment of hereditary angioedema |
Triporelin | pEHWSYwLRPG-NH2 | Pamoate | 10 | Trelstar Depot® | Debio Recherche Pharmaceutique | Intramuscular injection | GnRH agonist that causes a transient increase in serum testosterone levels. As a result, isolated cases of worsening of signs and symptoms of prostate cancer during the first weeks of treatment |
Gramicidin D | XGALAVVVWLWLWLWY X–V or I Y–W, F or Y | Chloride | 16 | Neosporin®/Sofradex® | Pfizer/Sanofi | External use only, occular use | Short term treatment of steroid responsive conditions of the eye when prophylactic antibiotic treatment is also required; Otitis externa |
Bivalirudin | fPRPGGGGNGDFEEIPEEYL | Trifluoroacetate | 20 | Angiomax®/Angiox® | The Medicines Company UK | Intravenous infusion/injection | Prothrombin inhibitor |
Lucinactant | KLLLLKLLLLKLLLKLLLLK | Acetate | 21 | Surfaxin® | Discovery Laboratories, Inc. | Intratracheal administration | Lung function improvement, pulmonary surfactant |
Cosyntropin | SYSMEHFRWGKPVGKKRRPVKVYP | Acetate | 24 | Cortrosyn® | Amphastar Pharmaceuticals | Intravenous injection, intravenous infusion, intramuscular injection | Agonist of adrenocorticotropic hormone receptor |
Secretin | HSDGTFTSELSRLRDSARLQRLLQGLV | Acetate | 27 | SecreFlo®, Secremax® | Repligen Corp | Intravenous infusion | Agonist of secretin receptor |
Thymalfasin | SDAAVDTSSEITTKDLKEKKEVVEEAEN | Acetate | 28 | Zadaxin® | SciClone Pharmaceuticals (SCLN) | Subcutaneous injection | Synthetic analogue of thymosin-alpha-1 for the treatment of malignant melanoma |
Glucagon recombinant | HSQGTFTSDYSKYLDSRRAQDFVQWLMNT | Chloride | 29 | GlucaGen®/Glucagon® | Novo Nordisk/Eli Lilly | Subcutaneous, intramuscular, or intravenous infusion | Agonist of glucagon, glucagon-like peptide 1, and glucagon-like peptide 2 receptors |
Sermorelin | YADAIFTNSYRKVLGQLSARKLLQDIMSRQ | Acetate | 30 | Sermorelin acetate® | Emd serono inc | Subcutaneous injection | Agonist of growth hormone-releasing hormone receptor |
Nesiritide | SPKMVQGSGCFGRKMDRISSSSGLGCKVLRRH | Acetate | 32 | NATRECOR® | Scios unit of Johnson and Johnson, | Intravenous injection | Recombinant form of the B-type natriuretic peptide |
Liraglutide | HAEGTFTSDVSSYLEGQAAKEEFIIAWLVKGRG | Acetate | 33 | Saxenda®, Victoza® | Novo Nordisk | Subcutaneous injection | Agonist of glucagon-like peptide 1 receptor |
Enfuvirtide | Ac-YTSLIHSLIEESQNQQEKNEQELLELDKWASLWNWF-NH2 | Acetate | 36 | FUZEON® | Roche | Subcutaneous injection | HIV fusion inhibitor, antiretroviral drug used in combinational therapy in the treatment of HIV-1 |
Pramlintide | Kc(CNTATC)ATQRLANFLVHSSNNFGPILPPTNVGSNTY-NH2 | Acetate | 37 | Symlin® | AstraZeneca | Subcutaneous injection | Calcitonin receptor, receptor activity-modifying protein 1, receptor activity-modifying protein 2, receptor activity-modifying protein 3 |
Acthar | SYSMEHFRWGKPVGKKRRPVKVYPDGAEDQLAEAFPLEF | Acetate | 39 | H.P. Acthar® | Questcor Pharmaceutical Inc. | Intramuscular or subcutaneous injection, | Adrenocorticotropic hormone (ACTH) analogue indicated as monotherapy for the treatment of infantile spasms in infants and children under 2 years of age |
Corticorelin | SQEPPISLDLTFHLLREVLEMTKADQLAQQAHSNRKLLDIA-NH2, | Trifluoroacetate | 41 | Acthrel® | Ferring Pharmaceuticals, Inc. | Intravenous injection | Analogue of the human CRH (hCRH) peptide. Stimulates ACTH release and further cortisol production |
Tesamorelin | X-YADAIFTNSYRKVLGQLSARKLLQDIMSRQQGESNQERGARARL-NH2 X-trans-3-hexenoic acid | Acetate | 44 | Egrifta® | Theratechnologies | Subcutaneous injection | Agonist of growth hormone-releasing hormone receptor |
Aprotinin | RPDFCLEPPYTGPCKARIIRYFYNAKAGLCQTFVYGGCRAKRNNFKSAEDCMRTCGGA | Acetate | 58 | Trasylol® | Bayer Pharmaceuticals | Intravenous administration | Broad spectrum protease inhibitor which modulates systemic inflammatory response |
Lepirudin | LXYTDC(1)TESGQNLC(1)LC(2)EGSNVC(3)GQGNKC(2)ILGSDGEKNQC(3)VTGEGTPKPQSHNDGDFEEIPEEYLQ X–V or T Dissulfide bridges 1-1; 2-2 and 3-3 | Acetate | 65 | Refludan® | Berlex Labs | Intravenous infusion | Thrombin inhibitor, analogue of hirudin, used as anticoagulant |
Mecasermin | GPETLCGAELVDALQFVCGDRGFYFNKPTGYGSSSRRAPQTGIVDECCFRSCDLRRLEMYCAPLKPAKSA | Acetate | 70 | Increlex® | Tercica, Inc. | Subcutaneous Injection | Human insulin-like growth factor-1 (rhIGF-1, rDNA origin) |
Peptide | Counter-Ion Exchange | Effect on Formulation Properties | Dosage Form | Ref. |
---|---|---|---|---|
Octreotide | Acetate ↓ Chloride | Slower octreotide release rate and enhanced stability | Liquid crystalline formulations | [87] |
TH 9507 | Acetate/Chloride ↓ Acetate + chloride | Diminished tendency towards fibril formation | Various (e.g., liquid formulation) | [89] |
Teverelix | Acetate ↓ Trifluoroacetate | Elimination of gel formation | Microcrystalline aqueous suspension | [90] |
Somatostatin Agonists(e.g., Lanreotide) | Acetate ↓ Oleate | Enhanced transdermal bioavailability | Transdermal patches, ointments | [91] |
Exendin-4 | Acetate ↓ Salicylate | Enhanced oral mucosal bioavailability | Liquid nonaqueous formulation | [92] |
Leuprolide | Acetate ↓ Decanasulphonate | Enhanced pulmonary bioavailability | Aerosol formulation | [93] |
Peptides | Counter-Ions | Dosage Form | Ref. |
---|---|---|---|
Leuprolide Insulin | Docusate (leuprolide) Dodecylsulphate (insulin) | SLN | [96] |
Insulin | Dimyristoyl phosphatidylglycerol | SEDDS | [97] |
Leuprolide | Oleate | SEDDS | [98] |
Desmopressin | Docusate Dodecyl sulphate Octadecyl sulphate Oleate Stearate | SEDDS | [99] |
Leuprolide Insulin Desmopressin | Docusate Dodecyl sulphate Oleate | SEDDS | [100,101] |
Polymixin B | (1R)-(−)-10-camphorsulphonate 1,2-ethanesulphonate 1-decanesulphonate 1-heptanesulphonate 1-octanesulphonate 2-naphthalenesulphonate Benzenesulphonate Decanoate Deoxycholate Dodecyl benzensulphonate Dodecyl sulphate Hexanoate Myristate Oleate Pamoate | PCL/PEG-based nanoparticles | [102] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sikora, K.; Jaśkiewicz, M.; Neubauer, D.; Migoń, D.; Kamysz, W. The Role of Counter-Ions in Peptides—An Overview. Pharmaceuticals 2020, 13, 442. https://doi.org/10.3390/ph13120442
Sikora K, Jaśkiewicz M, Neubauer D, Migoń D, Kamysz W. The Role of Counter-Ions in Peptides—An Overview. Pharmaceuticals. 2020; 13(12):442. https://doi.org/10.3390/ph13120442
Chicago/Turabian StyleSikora, Karol, Maciej Jaśkiewicz, Damian Neubauer, Dorian Migoń, and Wojciech Kamysz. 2020. "The Role of Counter-Ions in Peptides—An Overview" Pharmaceuticals 13, no. 12: 442. https://doi.org/10.3390/ph13120442
APA StyleSikora, K., Jaśkiewicz, M., Neubauer, D., Migoń, D., & Kamysz, W. (2020). The Role of Counter-Ions in Peptides—An Overview. Pharmaceuticals, 13(12), 442. https://doi.org/10.3390/ph13120442