Synthesis of Platinum(II) Complexes with Some 1-Methylnitropyrazoles and In Vitro Research on Their Cytotoxic Activity
Abstract
:1. Introduction
2. Results
2.1. Synthesis and Structural Analysis
2.2. Lipophilicity
2.3. Cellular Platinum Uptake
2.4. In Vitro Cytotoxic Activity
2.5. Reactivity with L-Glutathione (GSH)
2.6. Cell Cycle and Cell Death Analysis
3. Discussion
4. Conclusions
- The presence of an additional substituent in the 1-methylnitropyrazole ligand ring reduces in vitro cytotoxicity.
- The maximal possible distance of the nitro group from the coordination center of 1-methylnitropirazole ligand has a positive effect on the stability of its Pt complex.
- Generally, it can be observed that trans isomers are both more lipophilic and more active than their cis counterparts in the series of tested compounds.
- In most cases, the tested compounds were found to be inactive or less active under hypoxic conditions compared to normoxia.
5. Materials and Methods
5.1. General
5.2. Synthesis of Platinum(II) Complexes
5.2.1. Complexation with 1-Methyl-3-Nitropyrazole
5.2.2. Complexation with 1-Methyl-4-Nitropyrazole
5.2.3. Thermal Isomerization of cis-Complex 1 into its trans Isomer 2 Conducted in Solid State
5.2.4. Complexation with 1-Methyl-5-Nitropyrazole
5.2.5. Complexation with Methyl 1-Methyl-4-Nitropyrazole-5-Carboxylate
5.2.6. Complexation with 1,3-Dimethyl-4-Nitropyrazole
5.2.7. Complexation with Methyl 1-Methyl-4-Nitropyrazole-3-Carboxylate
5.3. Single Crystal X-ray Structure Determination of 2
5.4. Determination of logP by Shake-Flask Method
5.5. Reaction with L-Glutathione
5.6. Cell Culture
5.7. Compounds Preparation to In Vitro Studies
5.8. In Vitro Cytotoxicity Assay
5.9. Sulforhodamine B Assay
5.10. Total Platinum Uptake Level
5.11. Cell Cycle Analysis
5.12. Determination of Apoptosis by Annexin V Staining
5.13. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Montaña, Á.M.; Batalla, C. The Rational Design of Anticancer Platinum Complexes: The Importance of the Structure-Activity Relationship. Curr. Med. Chem. 2009, 16, 2235–2260. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Hu, L. Design of Anticancer Prodrugs for Reductive Activation. Med. Res. Rev. 2009, 29, 29–64. [Google Scholar] [CrossRef] [PubMed]
- Mistry, I.N.; Thomas, M.; Calder, E.D.D.; Conway, S.J.; Hammond, E.H. Clinical Advances of Hypoxia-Activated Prodrugs in Combination With Radiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2017, 98, 1183–1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilmour, D.W.; Sadler, P.J. New Metal Complexes of 4-Nitrosubstituted Pyrazoles, Imidazoles and Isothiazoles. GB(UK) Patent GB2122194A, 11 January 1984. [Google Scholar]
- Cleare, M.J.; Hoeschele, J.D. Antitumor platinum compounds. Relationship between structure and activity. Platin. Met. Rev. 1973, 17, 2–13. [Google Scholar]
- Reedijk, J. Increased understanding of platinum anticancer chemistry. Pure Appl. Chem. 2011, 83, 1709–1719. [Google Scholar] [CrossRef]
- Cleare, M.J.; Hoeschele, J.D. Studies on the antitumor activity of group VIII transition metal complexes. Part I. Platinum (II) complexes. Bioinorg. Chem. 1973, 2, 187–210. [Google Scholar] [CrossRef]
- Cai, L.; Yu, C.; Ba, L.; Liu, Q.; Quian, Y.; Yang, B.; Gao, C. Anticancer platinum based complexes with nonclassical structures. Appl. Organomet. Chem. 2018, 32, e4228. [Google Scholar] [CrossRef]
- Brabec, V.; Hrabina, O.; Kasparkova, J. Cytotoxic platinum coordination compounds. DNA binding agents; Coord. Chem. Rev. 2017, 351, 2–31. [Google Scholar] [CrossRef]
- Quiroga, A.G. Non-Classical Structures among Current Platinum Complexes with Potential as Antitumor Drugs. Curr. Top. Med. Chem. 2011, 112, 613–2622. [Google Scholar] [CrossRef]
- Rakić, G.M.; Grgurić-Sĭpka, S.; Kaluđerović, G.N.; Gómez-Ruiz, S.; Bjelogrlić, S.K.; Radulović, S.S.; Tešić, Z.L. Novel trans-dichloridoplatinum(II) complexes with 3- and 4-acetylpyridine: Synthesis, characterization, DFT calculations and cytotoxicity. Eur. J. Med. Chem. 2009, 44, 1921–1925. [Google Scholar] [CrossRef]
- Filipovic, L.; Arandelovic, S.; Gligorijevic, N.; Krivokuca, A.; Jankovic, R.; Srdic-Rajic, T.; Rakic, G.; Tesic, Z.; Radulovic, S. Biological evaluation of transdichloridoplatinum(II) complexes with 3- and 4-acetylpyridine in comparison to cisplatin. Radiol. Oncol. 2013, 47, 346–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrell, N.; Ha, T.T.B.; Souchard, J.P.; Wimmer, F.L.; Cros, S.; Johnson, N.P. Cytostatic trans-platinum(II) Complexes. J. Med. Chem. 1989, 32, 2240–2241. [Google Scholar] [CrossRef] [PubMed]
- Natile, G.; Coluccia, M. Current status of trans-platinum compounds in cancer therapy. Coord. Chem. Rev. 2001, 216, 383–410. [Google Scholar] [CrossRef]
- Coluccia, M.; Natile, G. Trans-Platinum Complexes in Cancer Therapy. Anti Cancer Agents Med. Chem. 2007, 7, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Knipp, M.; Karotki, A.V.; Chesnov, S.; Natile, G.; Sadler, P.J.; Brabec, V.; Vašak, M. Reaction of Zn7Metallothionein with cis- and trans-Pt(N-donor)2Cl2 Anticancer Complexes: Trans-PtII Complexes Retain Their N.-Donor Ligands. J. Med. Chem. 2007, 50, 4075–4086. [Google Scholar] [CrossRef]
- Li, C.; Li, Z.; Sletten, E.; Arnesano, F.; Losacco, M.; Natile, G.; Liu, Y. Methionine Can Favor DNA Platination by trans-Coordinated Platinum Antitumor Drugs. Angew. Chem. Int. Ed. 2009, 48, 8497–8500. [Google Scholar] [CrossRef]
- Xu, D.; Min, Y.; Cheng, Q.; Shi, H.; Wei, K.; Arnesano, F.; Natile, G.; Liu, Y. Chemical and cellular investigations of trans-ammine-pyridinedichlorido-platinum(II), the likely metabolite of the antitumor active cis-diammine-pyridine-chorido-platinum(II), Pt(IV) derivatives. J. Inorg. Biochem. 2013, 129, 15–22. [Google Scholar] [CrossRef]
- McGowan, G.; Parsons, S.; Sadler, P.J. Contrasting Chemistry of cis- and trans-Platinum(II) Diamine Anticancer Compounds: Hydrolysis Studies of Picoline Complexes. Inorg. Chem. 2005, 44, 7459–7467. [Google Scholar] [CrossRef]
- Fabijańska, M.; Orzechowska, M.; Rybarczyk-Pirek, A.J.; Dominikowska, J.; Bieńkowska, A.; Małecki, M.; Ochocki, J. Simple Trans-Platinum Complex Bearing 3-Aminoflavone Ligand Could Be a Useful Drug: Structure-Activity Relationship of Platinum Complex in Comparison with Cisplatin. Int. J. Mol. Sci. 2020, 21, 2116. [Google Scholar] [CrossRef] [Green Version]
- Kelland, L.R.; Abel, G.; McKeage, M.J.; Jones, M.; Goddard, P.M.; Valenti, M.; Murrer, B.A.; Harrap, K.R. Preclinical antitumor evaluation of bis-acetato-ammine-dichloro-cyclohexylamine platinum(IV): An orally active platinum drug. Cancer Res. 1993, 53, 2581–2586. [Google Scholar]
- Johnstone, T.C.; Suntharalingam, K.; Lippard, S.J. The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs. Chem. Rev. 2016, 116, 3436–3486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mangrum, J.B.; Farrell, N.P. Excursions in polynuclear platinum DNA binding. Chem. Commun. 2010, 46, 6640–6650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrell, N.P. Multi-platinum Anti-cancer Agents. Substitution-inert Compounds for Tumor Selectivity and New Targets. Chem. Soc. Rev. 2015, 44, 8773–8785. [Google Scholar] [CrossRef] [PubMed]
- Raynaud, F.I.; Boxall, F.E.; Goddard, P.M.; Valenti, M.; Jones, M.; Murrer, B.A.; Abrams, M.; Kelland, L.R. cis-Amminedichloro(2-methylpyridine) platinum(II) (AMD473), a novel sterically hindered platinum complex: In vivo activity, toxicology, and pharmacokinetics in mice. Clin. Cancer Res. 1997, 3, 2063–2074. [Google Scholar] [PubMed]
- Mugge, C.; Rothenburger, C.; Beyer, A.; Görls, H.; Gabbiani, C.; Casini, A.; Michelucci, E.; Landini, I.; Nobili, S.; Mini, E.; et al. Structure, solution chemistry, antiproliferative actions and protein binding properties of non-conventional platinum(II) compounds with sulfur and phosphorus donors. Dalton Trans. 2011, 40, 2006–2016. [Google Scholar] [CrossRef] [PubMed]
- Ma, E.S.F.; Bates, W.D.; Edmunds, V.; .Kelland, L.R.; Fojo, T.; Farrell, N. Enhancement of aqueous solubility and stability employing a trans acetate axis in trans planar amine platinum compounds while maintaining the biological profile. J. Med. Chem. 2005, 48, 5651–5654. [Google Scholar] [CrossRef]
- Wheate, N.J.; Walker, S.; Craig, G.E.; Oun, R. The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans. 2010, 39, 8113–8127. [Google Scholar] [CrossRef] [Green Version]
- Bhargava, A.; Vaishampayan, U.N. Satraplatin: Leading the new generation of oral platinum agents. Expert Opin. Investig. Drugs 2009, 18, 1787–1797. [Google Scholar] [CrossRef] [Green Version]
- Skov, K.A.; Farrell, N.P.; Chaplin, D.J. Platinum Complexes with One Radiosensitizing Ligand. U.S. Patent 4921963A, 1 May 1990. [Google Scholar]
- Brown, J.M. The hypoxic cell: A target for selective cancer therapy—Eighteenth Bruce F. Cain memorial award lecture. Cancer Res. 1999, 59, 5863–5870. [Google Scholar]
- Regiec, A.; Wojciechowski, P.; Mastalarz, H. Experimental and theoretical spectroscopic and electronic properties enriched with NBO analysis for 1-methyl-3-nitropyrazole and 1-methyl-5-nitropyrazole. J. Mol. Struct. 2014, 1075, 234–245. [Google Scholar] [CrossRef]
- Regiec, A.; Mastalarz, H.; Wojciechowski, P. Theoretical anharmonic Raman and infrared spectra with vibrational assignments and NBO analysis for 1-methyl-4-nitropyrazole. J. Mol. Struct. 2014, 1061, 166–174. [Google Scholar] [CrossRef]
- Regiec, A.; Wojciechowski, P. Synthesis and experimental versus theoretical research on spectroscopic and electronic properties of 3-methyl-4-nitroisothiazole. J. Mol. Struct. 2019, 1196, 370–388. [Google Scholar] [CrossRef]
- Katritzky, A.R.; Scriven, E.F.V.; Majumder, S.; Akhmedova, R.G.; Akhmedov, N.G.; Vakulenko, A.V. Direct nitration of five membered heterocycles. ARKIVOC 2005, 3, 179–191. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.; Hagen, K.D.; Maheswari, P.U.; Lutz, M.; Spek, A.L.; Reedijk, J.; van Wezel, G.P. Phenanthroline derivatives with improved selectivity as DNA-targeting anticancer or antimicrobial drugs. ChemMedChem 2008, 3, 1427–1434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marqués-Gallego, P.; Kalayda, G.V.; Jaehde, U.; den Dulk, H.; Brouwer, J.; Reedijk, J. Cellular accumulation and DNA platination of two new platinum(II) anticancer compounds based on anthracene derivatives as carrier ligands. Inorg. Chem. 2008, 47, 11171–11179. [Google Scholar] [CrossRef]
- Tocher, J.H. Reductive activation of nitroheterocyclic compounds. Gen. Pharmacol. 1997, 28, 485–487. [Google Scholar] [CrossRef]
- Sisson, G.; Goodwin, A.; Raudonikiene, A.; Hughes, N.J.; Mukhopadhyay, A.K.; Berg, D.E.; Hoffman, P.S. Enzymes Associated with Reductive Activation and Action of Nitazoxanide, Nitrofurans, and Metronidazole in Helicobacter pylori. Antimicrob. Agents Chemother 2002, 46, 2116–2123. [Google Scholar] [CrossRef] [Green Version]
- Zięba-Mizgała, A.; Puszko, A.; Regiec, A.; Kuduk-Jaworska, J. Electrophilic properties of nitroheterocyclic compounds. Potential hypoxic cells radiosensitizers. Bioelectrochemistry 2005, 65, 113–119. [Google Scholar] [CrossRef]
- Papesch, V.; Dodson, R.M. Isomeric Pyrazolo[4,3-d]pyrimidinedione. J. Org. Chem. 1965, 30, 199–203. [Google Scholar] [CrossRef]
- Regiec, A.; Mastalarz, H.; Mastalarz, A.; Kochel, A. Methylation of 4-nitro-3(5)-pyrazolecarboxylic acid. Tetrahedron Lett. 2009, 50, 2624–2627. [Google Scholar] [CrossRef]
- Regiec, A.; Mastalarz, A.; Wietrzyk, J.; Mastalarz, H. Cis-and trans-Platinum Complex Compounds (II) with 1-Methyl-4-Nitropyrazole, the Process for Their Preparation, Separation, Isomerization, and the Use for the Manufacture of Medicaments for Tumor Therapy. Polish Patent PL224068, 30 November 2016. [Google Scholar]
- Allen, A.D.; Theophanides, T. Platinum(II) Complexes: Infrared Spectra In The 300–800 cm−1 Region. Can. J. Chem. 1964, 42, 1551–1554. [Google Scholar] [CrossRef]
- Tetko, I.V.; Jaroszewicz, I.; Platts, J.A.; Kuduk-Jaworska, J. Calculation of lipophilicity for Pt(II) complexes: Experimental comparison of several methods. J. Inorg. Biochem. 2008, 102, 1424–1437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reithofer, M.R.; Valiahdi, S.M.; Galanski, M.; Jakupec, M.A.; Arion, V.B.; Keppler, B.K. Novel endothall containing platinum(IV) complexes-synthesis, characterization, and cytotoxic activity. Chem. Biodivers. 2008, 5, 2160–2170. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.J.; Lippard, S.J. In Vitro Anticancer Activity of cis-Diammineplatinum(II) Complexes with β-Diketonate Leaving Group Ligands. J. Med. Chem. 2012, 55, 5326–5336. [Google Scholar] [CrossRef] [Green Version]
- Jamalzadeh, L.; Ghafoori, H.; Sariri, R.; Rabuti, H.; Nasirzade, J.; Hasani, H.; Aghamaali, M.R. Cytotoxic Effects of Some Common Organic Solvents on MCF-7, RAW-264.7 and Human Umbilical Vein Endothelial Cells. Avicenna J. Med. Biochem. 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- Johnstone, T.C.; Wilson, J.J.; Lippard, S.J. Monofunctional and Higher-Valent Platinum Anticaner. Inorg. Chem. 2013, 52, 12234–12249. [Google Scholar] [CrossRef] [Green Version]
- Cherian, M.G. The Significance of the Nuclear and Cytoplasmic Localization of Metallothionein in Human Liver and Tumor Cells. Environ. Health Perspect. 1994, 102 (Suppl. 3), 131–135. [Google Scholar] [CrossRef] [Green Version]
- Hagrman, D.; Godisman, J.; Dabrowiak, J.C.; Souild, A.K. Kinetic study on the reaction of cisplatin with metallothionein. Drug Metab. Dispos. 2003, 31, 916–923. [Google Scholar] [CrossRef] [Green Version]
- Vermes, I.; Haanen, C.; Steffens-Nakken, H.; Reutelingsperger, C. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J. Immunol. Methods 1995, 184, 39–51. [Google Scholar] [CrossRef] [Green Version]
- Lecoeur, H. Nuclear apoptosis detection by flow cy-tometry: Influence of endogenous endonucleases. Exp. Cell Res. 2002, 277, 1–14. [Google Scholar] [CrossRef]
- Suchankova, T.; Vojtıskova, M.; Reedijk, J.; Brabec, V.; Kasparkova, J. DNA and glutathione interactions in cell-free media of asymmetric platinum(II) complexes cis- and trans-[PtCl2(isopropylamine) (1-methylimidazole)]: Relations to their different antitumor effects. J. Biol. Inorg. Chem. 2009, 14, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Gałczyńska, K.; Drulis-Kawa, Z.; Arabski, M. Antitumor Activity of Pt(II), Ru(III) and Cu(II) Complexes. Molecules 2020, 25, 3492. [Google Scholar] [CrossRef] [PubMed]
- Rigaku, O.D. CrysAlis PRO; Rigaku Oxford Diffraction Ltd.: Oxfordshire, UK, 2017. [Google Scholar]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, C71, 3–8. [Google Scholar] [CrossRef]
- Putz, H.; Brandenburg, K. Diamond-Crystal and Molecular Structure Visualization; Crystal Impact GbR: Bonn, Germany; Available online: http://www.crystalimpact.com/diamond (accessed on 28 November 2020).
- Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New Colorimetric Cytotoxicity Assay for Anticancer-Drug Screening. J. Natl. Cancer Inst. 1990, 82, 1107–1112. [Google Scholar] [CrossRef] [PubMed]
- Nevozhay, D. Cheburator software for automatically calculating drug inhibitory concentrations from in vitro screening assays. PLoS ONE 2014, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Compound | ng Pt/106 Cells | logP ± SD |
---|---|---|
1(cis), n = 4 | 27 ± 6 * | −0.35 ± 0.04 |
2(trans), n = 5 | 32 ± 6 * | 1.43 ± 0.16, |
3(cis), n = 5 | 82 ± 11 | −0.31 ± 0.04 |
4(trans), n = 5 | 83 ± 12 | 0.46 ± 0.00 |
5(cis), n = 5 | 39 ± 3 * | −0.58 ± 0.13 |
6(trans), n = 4 | 47 ± 17 * | −0.37 ± 0.03 |
7(cis), n = 4 | 16 ± 7 * | −0.69 ± 0.04 |
8 | † below IDL | −1.22 ± 0.08 |
Cisplatin, n = 4 | 74 ± 20 | −2.05 ± 0.17 |
Compound | Cancer Cells | Normal Cells | |||||
---|---|---|---|---|---|---|---|
MCF-7 | ES-2 | A549 | BALB/3T3 | ||||
Normoxia | Hypoxia | Normoxia | Hypoxia | Normoxia | Hypoxia | Normoxia | |
1(cis) | 74.7 ± 36.1 * | inactive | 29.4 ± 24.9 | 108.7 ± 22.6 * | 103.3 ± 28.8 * | inactive | >100 * |
2(trans) | 1.8 ± 0.9 ** | 11.1 ± 5.6 | 0.7 ± 0.7 ** | 1.1 ± 0.3 ** | 3.7 ± 2.9 ** | 7.7 ± 7.4 * | 8.19 ± 2.9 |
3(cis) | 10.1 ± 1.4 | 41.5 ± 39.9 | 75.4 ± 12.3 * | 51.9 ± 16.7 * | 53.4 ± 10.0 * | inactive | >100 * |
4(trans) | 7.8 ± 1.3 ** | 32.0 ± 9.2 * | 41.1 ± 7.1 * | 32.3 ± 27.0 | 31.0 ± 9.5 * | inactive | 74.4 ± 23.2 * |
5(cis) | 49.1 ± 30.1 | inactive | 38.1 ± 9.2 * | inactive | inactive | inactive | >100 * |
6(trans) | 23.6 ± 8.6 | 86.8 ± 19.0 * | 36.3 ± 8.6 * | 99.8 ± 37.9 * | 58.2 ± 7.6 * | inactive | >100 * |
7(cis) | 58.0 ± 8.7 * | inactive | 68.9 ± 10.0 * | inactive | 93.0 ± 12.9 * | inactive | >100 * |
8(ionic) | inactive | inactive | 48.5 ± 25.9 | inactive | inactive | inactive | >100 * |
1-Methyl-4-nitropyrazole | inactive | inactive | inactive | inactive | inactive | inactive | >100 * |
Cisplatin | 12.6 ± 2.6 | 14.7 ± 5.8 | 8.6 ± 2.6 | 13.7 ± 5.7 | 9.8 ± 1.2 | 23.9± 9.3 | 8.67± 2.6 |
Compound No | 2 |
---|---|
Formula | C14H22Cl2N6O6Pt |
Formula weight | 636.36 |
Temperature [K] | 100(2) |
λ [Å] | 0.71073 |
Crystal system | Orthorhombic |
Space group | Pbcn (No.60) |
a [Å] | 22.0311(7) |
b [Å] | 12.2362(4) |
c [Å] | 8.1475(3) |
α [°] | |
β [°] | |
γ [°] | |
V [Å3] | 2196.38(13) |
Z, ρcalc [g cm−3] | 4, 1.924 |
μ [mm−1] | 6.673 |
F(000) | 1232 |
Crystal size [mm] | 0.17 × 0.10 × 0.03 |
θ range[°] | 3.235 to 28.891°. |
rflns: total/unique | 7142/2571 |
Abs. corr. | analytical |
Min., max. transmission factors | 0.897/0.789 |
Data/restraints/params | 2571/0/136 |
GOF on F2 | 1.033 |
R1 [I > 2σ(I)] | 0.0263 |
wR2 (all data) | 0.0542 |
Max., min. Δρelect [e Å3] | 1011/−0.870 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mastalarz, H.; Mastalarz, A.; Wietrzyk, J.; Milczarek, M.; Kochel, A.; Regiec, A. Synthesis of Platinum(II) Complexes with Some 1-Methylnitropyrazoles and In Vitro Research on Their Cytotoxic Activity. Pharmaceuticals 2020, 13, 433. https://doi.org/10.3390/ph13120433
Mastalarz H, Mastalarz A, Wietrzyk J, Milczarek M, Kochel A, Regiec A. Synthesis of Platinum(II) Complexes with Some 1-Methylnitropyrazoles and In Vitro Research on Their Cytotoxic Activity. Pharmaceuticals. 2020; 13(12):433. https://doi.org/10.3390/ph13120433
Chicago/Turabian StyleMastalarz, Henryk, Agnieszka Mastalarz, Joanna Wietrzyk, Magdalena Milczarek, Andrzej Kochel, and Andrzej Regiec. 2020. "Synthesis of Platinum(II) Complexes with Some 1-Methylnitropyrazoles and In Vitro Research on Their Cytotoxic Activity" Pharmaceuticals 13, no. 12: 433. https://doi.org/10.3390/ph13120433
APA StyleMastalarz, H., Mastalarz, A., Wietrzyk, J., Milczarek, M., Kochel, A., & Regiec, A. (2020). Synthesis of Platinum(II) Complexes with Some 1-Methylnitropyrazoles and In Vitro Research on Their Cytotoxic Activity. Pharmaceuticals, 13(12), 433. https://doi.org/10.3390/ph13120433