Coordinate cis-[Cr(C2O4)(pm)(OH2)2]+ Cation as Molecular Biosensor of Pyruvate’s Protective Activity Against Hydrogen Peroxide Mediated Cytotoxity
Abstract
:1. Introduction
2. Results and Disscusion
3. Materials and Methods
3.1. Reagents
3.2. Cell culture
3.3. Cell treatment
3.4. Preincubation of medium with catalase
3.5. Cell viability: MTT assay
3.6. Kinetic measurements and simulation
3.7. Instrumentation
3.8. Statistical Analysis
4. Conclusion
Acknowledgments
References and Notes
- Friedman, J.; Peleg, E.; Kagan, T.; Shnizer, S.; Rosenthal, T. Oxidative stress in hypertensive, diabetic, and diabetic hypertensive rats. Am. J. Hyper. 2003, 16, 1049–1052. [Google Scholar]
- Ferrari, R.; Ceconi, C.; Curello, S.; Cargnoni, A.; Alfieri, O.; Pardini, A.; Marzollo, P.; Visioli, O. Oxygen free radicals and myocardial damage: protective role of thiol-containing agents. Am. J. Med. 1991, 91, 95–105. [Google Scholar]
- Reynolds, A.; Laurie, C.; Lee, C.; Mosley, R.; Gendelman, H.E. Oxidative stress and the pathogenesis of neurodegenerative disorders. Int. Rev. Neurobiol. 2007, 82, 297–325. [Google Scholar]
- Schleicher, E.; Friess, U. Oxidative stress, AGE, and atherosclerosis. Kidney Int. 2007, 106, 17–26. [Google Scholar]
- Standman, E.R.; Levine, R.L. Protein oxidation. Ann. NY Acad. Sci. 2000, 899, 191–208. [Google Scholar]
- Sultana, R.; Perluigi, M.; Butterfield, D.A. Protein oxidation and lipid peroxidation in brain of subjects with Alzheimer's disease: insights into mechanism of neurodegeneration from redox proteomics. Antioxid. Redox Signal. 2006, 8, 2021–2037. [Google Scholar]
- Dizdaroglu, M.; Jaruga, P.; Birincioglu, M.; Rodriguez, H. Free radical-induced damage to DNA: mechanisms and measurement. Free Radic. Biol. Med. 2002, 32, 1102–1115. [Google Scholar]
- Chance, B.; Sies, H.; Boveris, A. Hydroperoxide metabolism in mammalian organs . Physiol. Rev. 1979, 59, 527–605. [Google Scholar]
- Halliwell, B. Antioxidants in human health and disease. Ann. Rev. Nutr. 1996, 16, 33–50. [Google Scholar]
- Gutteridge, J.M.; Halliwell, B. Iron toxicity and oxygen radicals . Baillieres Clin. Haematol. 1989, 2, 195–256. [Google Scholar]
- Auerbach, J.M.; Segal, M. Peroxide modulation of slow onset potentiation in rat hippocampus. J. Neurosci. 1997, 17, 8695–8701. [Google Scholar]
- Makazan, Z.; Saini, H.K.; Dhalla, N.S. Role of oxidative stress in alterations of mitochondrial function in ischemic-reperfused hearts. Am. J. Physiol. Heart Circ. Physiol. 2007, 292, 1986–1994. [Google Scholar]
- Olanow, C.W. A radical hypothesis for neurodegeneration. Trends Neurosci. 1993, 16, 439–444. [Google Scholar]
- Cicalese, L.; Lee, K.; Schraut, W. Pyruvate prevents ischemia-reperfusion mucosal injury of rat small intestine. Am. J. Surg. 1999, 171, 97–100. [Google Scholar]
- Boer, L.W.; Bekx, P.A.; Han, L.; Steinke, L. Pyruvate enhances recovery of rat hearts after ischemia and reperfusion by preventing free radical generation. Am. J. Physiol. Heart Circ. Physiol. 1993, 265, 1571–1576. [Google Scholar]
- Crestanello, J.A.; Lingle, D.M.; Millili, J.; Whitman, G.J. Pyruvate improves myocardial tolerance to reperfusion injury by acting as an antioxidant: a chemiluminescence study. Surgery 1998, 124, 92–99. [Google Scholar]
- O'Donnell-Tormey, J.; Nathan, C.F.; Lanks, K.; DeBoer, C.J.; de la Harpe, J. Secretion of pyruvate. An antioxidant defense of mammalian cells. J. Exp. Med. 1987, 165, 500–514. [Google Scholar]
- Mallet, R.T.; Sun, J. Antioxidant properties of myocardial fuels. Mol. Cell Biochem. 2003, 253, 103–111. [Google Scholar]
- Constantopoulos, G.; Barranger, J.A. Nonenzymatic decarboxylation of pyruvate. Anal. Biochem. 1984, 139, 353–358. [Google Scholar]
- Tabatabaie, T.; Potts, J.D.; Floyd, R.A. Reactive Oxygen Species-Mediated Inactivation of Pyruvate Dehydrogenase. Arch. Biochem. Biophy. 1996, 32, 336–339. [Google Scholar]
- Bogaret, Y.E.; Rosenthal, R.E.; Fiskum, G. Postischemic Inhibition of Cerebral Cortex Pyruvate Dehydrogenase. Free Rad. Biol. Med. 1994, 16, 811–820. [Google Scholar]
- Kita, E.; Kachniarz, E. Model quasi-enzyme compounds of chromium(III) with vitamins B6 and histamine. Part VIII: Kinetics of acid catalyzed liberation of pyridoxylideneglycine (pl-gly) from [Cr(C2O4)2(pl-gly)]- ion. Pol. J. Chem. 1991, 65, 1925–1931. [Google Scholar]
- Hussain, I.; Kita, E.; Kita, P. Studies on base hydrolysis mechanism of chromium(III) complexes. Part X. Preparation and kinetics of aquation of [Cr(NCS)4(histamine)]- ion in aqueous acidic and alkaline solutions. Pol. J. Chem. 1991, 65, 2111– 2119. [Google Scholar]
- Kita, E. Model quasi-enzyme compounds of chromium(III) with vitamins B6 and histamine. Part IX: Kinetics and products of Fe(III)-promoted aquation of [Cr(C2O4)2(pyridoxamine)]- anion. Pol. J. Chem. 1991, 65, 1933–1940. [Google Scholar]
- Kita, E. Model quasi-enzyme compounds of chromium(III) with vitamins B6 and histamine. Part IV: Kinetics of Fe3+ (aq) promoted aquation of [Cr(C2O4)2(histamine)]- anion. Pol. J. Chem. 1987, 61, 361–367. [Google Scholar]
- Jacewicz, D.; Dąbrowska, A.; Banecki, B.; Kolisz, I.; Woźniak, M.; Chmurzyński, L. A stopped-flow study on the kinetics and mechanism of CO2 uptake by chromium(III) complexes with histamine and pyridoxamine. Trans. Met. Chem. 2005, 30, 209–216. [Google Scholar]
- Forster, J.; Edsall, A.; Otis, K.J. CO2 Biochemical Aspects, Roughton, ed.; Washington: D.C., 1969; pp. 487–496. [Google Scholar]
- Dąbrowska, A.; Jacewicz, D.; Łapińska, A.; Banecki, B.; Figarski, A.; Szkatuła, M.; Lehman, J.; Krajewski, J.; Kubasik-Juraniec, J.; Woźniak, M.; Chmurzyński, L. Pivotal participation of nitrogen dioxide in L-arginine induced acute necrotizing pancreatitis; protective role of superoxide scavenger 4-OH TEMPO. Biochem. Biophys. Res. Comm. 2005, 326, 313–32. [Google Scholar]
- Desagher, S.; Glowinski, J.; Prémont, J. Pyruvate protects neurons against hydrogen peroxide-induced toxicity. J Neurosci. 1997, 17, 9060–9067. [Google Scholar]
- Lee, Y.J.; Kang, I.J.; Bünger, R.; Kang, Y.H. Enhanced survival effect of pyruvate correlates MAPK and NF-kappaB activation in hydrogen peroxide-treated human endothelial cells. J. Appl. Physiol. 2004, 2, 793–801. [Google Scholar]
- Lee, Y.J.; Kang, I.J.; Bünger, R.; Kang, Y.H. Mechanisms of pyruvate inhibition of oxidant-induced apoptosis in human endothelial cells. Microvasc. Res. 2003, 2, 91–101. [Google Scholar]
- Owen, O.E.; Mozzoli, M.A.; Boden, G.; Patel, M.S.; Reichard, G.A., Jr; Trapp, V.; Shuman, C.R.; Felig, P. Substrate, hormone, and temperature responses in males and females to a common breakfast. Metabolism 1980, 29, 511–523. [Google Scholar]
- Meierhenrich, R.; Jedicke, H.; Voigt, A.; Lange, H. The effect of erythropoietin on lactate, pyruvate and excess lactate under physical exercise in dialysis patients. Clin. Nephrol. 1996, 45, 90–97. [Google Scholar]
- O′ Donnell-Tormey, J.; Nathan, C.F.; Lanks, K.; DeBoer, C.J.; de la Harpe, J. Secretion of pyruvate. An antioxidant defense of mammalian cells. J. Exp. Med. 1987, 165, 500–514. [Google Scholar]
- Wasilenko, W.J.; Marchok, A.C. Pyruvate regulation of growth and differentiation in primary cultures of rat tracheal epithelial cells. Exp. Cell. Res. 1984, 155, 507–17. [Google Scholar]
- Reed, L.J. A trail of research from lipoic acid to á-keto acid dehydrogenase complexes. J. Biol. Chem. 2001, 276, 38329–38336. [Google Scholar]
- Dijkstra, U.; Gabreëls, F.; Joosten, E.; Wevers, R.; Lamers, K.; Doesburg, W.; Renier, W. Friedreich's ataxia: intravenous pyruvate load to demonstrate a defect in pyruvate metabolism. Neurology 1984, 34, 1493–1497. [Google Scholar]
- van Eldik, R.; Palmer, D.A.; Harris, G.M. Kinetics and Mechanism of Aquation and Formation Reactions of Carbonato Complexes. 18. Carbon Dioxide Uptake by and Decarboxylation of the trans-Bis(ethylenediamine)rhodium(III) System in Aqueous Solution. Inorg. Chem. 1980, 19, 3673–3679. [Google Scholar]
- de Castro, B.; Freire, C. Spectroscopic and Magnetic Properties of Low Spin Chromium(II) Tris Complexes with the Bidentate -Diimine Ligands: 2,2′-Pyridylbenzimidazole, 2,2′-Pyridylimidazole and 2,2′-Pyridylimidazoline. Synth. React. Inorg. Met. Org. Nano-Met. Chem. 1990, 20, 1–12. [Google Scholar]
- Haupt, G.W. An alkaline solution of potassium chromate as a transmittancy standard in the ultraviolet. J. Research Nat. Bur. Standards 1952, 48, 414–416. [Google Scholar]
- Beetz, I. Microanalytisches Laboratorium; Kronach, 1989; pp. 33–39. [Google Scholar]
- Szabelski, M.; Guzow, K.; Rzeska, A.; Malicka, J.; Przyborowska, M.; Wiczk, W. Acidity of carboxyl group of tyrosine and its analogues and derivatives studies by steady-state fluorescence spectroscopy. J. Photochem. Photobiol. A: Chemistry 2002, 152, 73–77. [Google Scholar]
- Johanson, M.L.; Correira, J.J.; Yphantis, D.A.; Halvorson, H.R. Analysis of data from the analytical ultracentrifuge by nonlinear least- squares techniques. Biophys. J. 1981, 36, 575–588. [Google Scholar]
- Nagel, J.F.; Parodi, L.A.; Lozier, R.H. Procedure for testing kinetic models of the photocycle of bacteriorhodopsin. Biophys. J. 1982, 38, 161–174. [Google Scholar]
- Knutson, J.R.; Beechem, J.M.; Brand, L. Simultaneous analysis of multiple fluorescence decay curves: a global approach. Chem. Phys. Lett. 1983, 102, 501–507. [Google Scholar]
- Maeder, M.; Zuberbuchler, A. Nonlinear Least- Squares Fitting of Multivariate Absorption Data. Anal. Chem. 1990, 64, 2220–2224. [Google Scholar]
CO2 [M] | k1 [ms-1 mM-1] | k2 [s-1 M-1] |
---|---|---|
CO2 was generated control sample | ||
1.08 | 5.61E-1 | 7.88E-1 |
1.87 | 5.68E-1 | 7.89E-1 |
2.13 | 5.7E-1 | 7.91E-1 |
3.33 | 5.94E-1 | 8.07E-1 |
4.12 | 6.03E-1 | 8.13E-1 |
CO2 was generated upon addition of 1 mM H2O2 to the culture medium | ||
1.02 | 5.61E-1 | 7.82E-1 |
1.87 | 5.68E-1 | 7.89E-1 |
2.88 | 5.88E-1 | 8.03E-1 |
3.43 | 5.95E-1 | 8.08E-1 |
CO2 was generated upon addition of 0.5 mM sodium pyruvate to the culture medium | ||
2.65 | 5.81E-1 | 7.95E-1 |
2.77 | 5.87E-1 | 7.98E-1 |
3.09 | 5.92E-1 | 8.06E-1 |
3.38 | 5.94E-1 | 8.07E-1 |
3.65 | 5.96E-1 | 8.09E-1 |
CO2 was generated upon addition of 1 mM sodium pyruvate to the culture medium | ||
2.99 | 5.91E-1 | 8.05E-1 |
3.84 | 5.98E-1 | 8.10E-1 |
3.98 | 6.01E-1 | 8.11E-1 |
4.12 | 6.03E-1 | 8.13E-1 |
4.34 | 6.05E-1 | 8.15E-1 |
CO2 [M] | k1 [ms-1 mM-1] | k2 [ms-1 mM-1] |
CO2 was generated upon addition of 5 mM sodium pyruvate to the culture medium | ||
6.09 | 6.07E-1 | 8.18E-1 |
6.66 | 6.12E-1 | 8.21E-1 |
6.94 | 6.14E-1 | 8.23E-1 |
7.12 | 6.17E-1 | 8.25E-1 |
8.23 | 6.28E-1 | 8.29E-1 |
9.23 | 6.35E-1 | 8.55E-1 |
9.98 | 6.41E-1 | 8.63E-1 |
CO2 was generated upon addition of 0.5 mM pyruvate and 1 mM H2O2 | ||
8.07 | 6.23E-1 | 8.27E-1 |
8.39 | 6.29E-1 | 8.32E-1 |
8.60 | 6.31E-1 | 8.47E-1 |
11.2 | 6.53E-1 | 8.91E-1 |
13.2 | 7.22E-1 | 9.31E-1 |
CO2 was generated upon addition of 1 mM pyruvate and 1 mM H2O2 | ||
32.3 | 8.73E-1 | 1.09 |
33.6 | 9.02E-1 | 1.11 |
44.3 | 1.01 | 1.26 |
52.3 | 1.09 | 1.31 |
CO2 was generated upon addition of 5 mM pyruvate and 1 mM H2O2 | ||
84.6 | 1.41 | 1.67 |
88.9 | 1.43 | 1.68 |
89.1 | 1.44 | 1.71 |
91.2 | 1.48 | 1.74 |
98.2 | 1.54 | 1.81 |
© 2008 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Jacewicz, D.; Szkatuła, M.; Chylewska, A.; Dąbrowska, A.; Woźniak, M.; Chmurzyński, L. Coordinate cis-[Cr(C2O4)(pm)(OH2)2]+ Cation as Molecular Biosensor of Pyruvate’s Protective Activity Against Hydrogen Peroxide Mediated Cytotoxity. Sensors 2008, 8, 4487-4504. https://doi.org/10.3390/s8084487
Jacewicz D, Szkatuła M, Chylewska A, Dąbrowska A, Woźniak M, Chmurzyński L. Coordinate cis-[Cr(C2O4)(pm)(OH2)2]+ Cation as Molecular Biosensor of Pyruvate’s Protective Activity Against Hydrogen Peroxide Mediated Cytotoxity. Sensors. 2008; 8(8):4487-4504. https://doi.org/10.3390/s8084487
Chicago/Turabian StyleJacewicz, Dagmara, Michał Szkatuła, Agnieszka Chylewska, Aleksandra Dąbrowska, Michał Woźniak, and Lech Chmurzyński. 2008. "Coordinate cis-[Cr(C2O4)(pm)(OH2)2]+ Cation as Molecular Biosensor of Pyruvate’s Protective Activity Against Hydrogen Peroxide Mediated Cytotoxity" Sensors 8, no. 8: 4487-4504. https://doi.org/10.3390/s8084487
APA StyleJacewicz, D., Szkatuła, M., Chylewska, A., Dąbrowska, A., Woźniak, M., & Chmurzyński, L. (2008). Coordinate cis-[Cr(C2O4)(pm)(OH2)2]+ Cation as Molecular Biosensor of Pyruvate’s Protective Activity Against Hydrogen Peroxide Mediated Cytotoxity. Sensors, 8(8), 4487-4504. https://doi.org/10.3390/s8084487