High Sensitive Temperature Sensor Using a Liquid-core Optical Fiber with Small Refractive Index Difference Between Core and Cladding Materials
Abstract
:1. Introduction
2. Experimental Section
2.1. LCOF sensor fabrication
2.2. Experiment setup
2.3. Results
3. Discussions and Conclusions
3.1. Simulation of the experiment
3.2. Conclusions
Acknowledgments
References and Notes
- Giallorenzi, T.; Bucaro, J.; Dandridge, A.; Sigel, G.; Cole, J.; Rashleigh, S.; Priest, R. Optical fiber sensor technology. J. Quant. Electron. 1982, 18, 626–665. [Google Scholar]
- Gottlieb, M.; Brand, G. B. Fiber-optic temperature sensor based on internally generated thermal radiation. Appl. Opt. 1981, 20, 3408–3417. [Google Scholar]
- Gottlieb, M.; Brand, G. B. Temperature sensing in optical fibers using cladding and jacket loss effects. Appl. Opt. 1981, 20, 3867–3873. [Google Scholar]
- Jones, B. E. Optical fiber sensors and systems for industry. J. Phys. E. 1985, 18, 770–782. [Google Scholar]
- Polynkin, P.; Polynkin, A.; Peyghambarian, N.; Mansuripur, M. Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels. Opt. Lett. 2005, 30, 1273–1275. [Google Scholar]
- Adamovsky, G. Fiber-optic displacement sensor with temporally separated signal and reference channels. Appl. Opt. 1988, 27, 1313–1315. [Google Scholar]
- Minkovich, V.; Villatoro, J.; Monzón-Hernández, D.; Calixto, S.; Sotsky, A.; Sotskaya, L. Holey fiber tapers with resonance transmission for high-resolution refractive index sensing. Opt. Express 2005, 13, 7609–7614. [Google Scholar]
- Monro, T. M.; Belardi, W.; Furusawa, K.; Bagget, J. C.; Broderick, N. G. R.; Richardson, D. J. Sensing with microstructured optical fibers. Meas. Sci. Technol. 2001, 12, 854–858. [Google Scholar]
- Adamovsky, G. Fiber-optic displacement sensor with temporally separated signal and reference channels. Appl. Opt. 1988, 27, 1313–1316. [Google Scholar]
- Bertholds, A.; Dandliker, R. Deformation of single-mode optical fibers under static longitudinal stress. J. Lightwave Technol. 1987, 5, 895–900. [Google Scholar]
- Adamovsky, G.; Piltch, N. D. Fiber-optic thermometer using temperature dependent absorption broadband detection, and time domain referencing. Appl. Opt. 1986, 25, 4439–4444. [Google Scholar]
- Johnstone, W.; Thursby, G.; Moodie, D.; McCallion, K. Fiber-optic refractometer that utilizes multimode waveguide overlay devices. Opt. Lett. 1992, 17, 1538–1541. [Google Scholar]
- Sheem, S. K.; Cole, J. H. Acoustic sensitivity of single-mode optical power dividers. Opt. Lett. 1979, 4, 322–325. [Google Scholar]
- Lou, J.; Tong, L.; Ye, Z. Modeling of silica nanowires for optical sensing. Opt. Express 2005, 13, 2135–2140. [Google Scholar]
- Villatoro, J.; Monzón-Hernández, D. Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers. Opt. Express 2005, 13, 5087–5092. [Google Scholar]
- Villatoro, J.; Monzón-Hernández, D.; Talavera, D. High resolution refractive index sensing with cladded multimode tapered optical fiber. Electron. Lett. 2004, 40, 106–107. [Google Scholar]
- Minkovich, V. P.; Monzón-Hernández, D.; Villatoro, J.; Badenes, G. Microstructured optical fiber coated with thin films for gas and chemical sensing. Opt. Express 2006, 14, 8413–8418. [Google Scholar]
- Stone, J. Optical transmission loss in liquid-core hollow fibers. J. Quant. Electron. 1972, 8, 386–388. [Google Scholar]
- Kuribara, M.; Takeda, Y. Liquid core optical fiber for voltage measurement using Kerr effect. Electron. Lett. 1983, 19, 133–135. [Google Scholar]
- Hartog, A. A distributed temperature sensor based on liquid-core optical fibers. J. Lightwave Technol. 1983, LT-1, 498–509. [Google Scholar]
- deVries, M.; Zimmermann, B. D.; Vengsarkar, A. M.; Claus, R. O. Liquid core optical fiber temperature sensors. In IEEE Region 3 Technical Conference; Huntsville (USA), 2003; pp. 1135–1138. [Google Scholar]
- Payne, D.N.; Gambling, W.A. New low-loss liquid core fiber waveguide. Electron. Lett. 1972, 8, 374–376. [Google Scholar]
- Hartog, H. A distributed temperature sensor based on liquid-core optical fibers. J. Lightwave Technol. 1983, LT-1, 498–509. [Google Scholar]
- Samoc, A. Dispersion of refractive properties of solvents: Chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared. J. Appl.Phys. 2003, 94, 6167–6174. [Google Scholar]
- Weber, M. J. Handbook of Optical Materials.; CRC Press: Boca Rtaon, FL, 2003; pp. 93–105. [Google Scholar]
© 2008 by MDPI Reproduction is permitted for noncommercial purposes.
Share and Cite
Xu, Y.; Chen, X.; Zhu, Y. High Sensitive Temperature Sensor Using a Liquid-core Optical Fiber with Small Refractive Index Difference Between Core and Cladding Materials. Sensors 2008, 8, 1872-1878. https://doi.org/10.3390/s8031872
Xu Y, Chen X, Zhu Y. High Sensitive Temperature Sensor Using a Liquid-core Optical Fiber with Small Refractive Index Difference Between Core and Cladding Materials. Sensors. 2008; 8(3):1872-1878. https://doi.org/10.3390/s8031872
Chicago/Turabian StyleXu, Yonghao, Xianfeng Chen, and Yu Zhu. 2008. "High Sensitive Temperature Sensor Using a Liquid-core Optical Fiber with Small Refractive Index Difference Between Core and Cladding Materials" Sensors 8, no. 3: 1872-1878. https://doi.org/10.3390/s8031872
APA StyleXu, Y., Chen, X., & Zhu, Y. (2008). High Sensitive Temperature Sensor Using a Liquid-core Optical Fiber with Small Refractive Index Difference Between Core and Cladding Materials. Sensors, 8(3), 1872-1878. https://doi.org/10.3390/s8031872