Next Article in Journal
Quantitative Boundary Support Characterization for Cantilever MEMS
Next Article in Special Issue
An Optical Biosensor based on Immobilization of Laccase and MBTH in Stacked Films for the Detection of Catechol.
Previous Article in Journal
A Wetness Index Using Terrain-Corrected Surface Temperature and Normalized Difference Vegetation Index Derived from Standard MODIS Products: An Evaluation of Its Use in a Humid Forest-Dominated Region of Eastern Canada
Previous Article in Special Issue
Development of a Surface Plasmon Resonance n-dodecane Vapor Sensor
Article Menu

Export Article

Open AccessArticle

Investigation on Clarified Fruit Juice Composition by Using Visible Light Micro-Raman Spectroscopy

Consiglio Nazionale delle Ricerche, Istituto di Cibernetica “E. Caianiello”, Pozzuoli, Italy
Dipartimento di Scienze Fisiche, Università “Federico II”, Naples, Italy
Consorzio Interuniversitario INBB, Sezione di Napoli, Italy
Biophysics and Nanoscience Centre, CNISM, Università della Tuscia, Viterbo, Italy
Dipartimento di Medicina Sperimentale, Seconda Università di Napoli, Naples, Italy
Author to whom correspondence should be addressed.
Sensors 2007, 7(10), 2049-2061;
Received: 21 September 2007 / Accepted: 1 October 2007 / Published: 3 October 2007
(This article belongs to the Special Issue Optical Biosensors)
PDF [267 KB, uploaded 21 June 2014]


Liquid samples of clarified apple and apricot juices at different productionstages were investigated using visible light micro-Raman spectroscopy in order to assessits potential in monitoring fruit juice production. As is well-known, pectin plays a strategicrole in the production of clarified juice and the possibility of using Raman for its detectionduring production was therefore evaluated. The data analysis has enabled the clearidentification of pectin. In particular, Raman spectra of apple juice samples from washedand crushed fruits revealed a peak at 845 cm-1 (typical of pectin) which disappears in theRaman spectra of depectinised samples. The fructose content was also revealed by thepresence of four peaks at 823 cm-1, 872 cm-1, 918 cm-1 and 975 cm-1. In the case of apricotjuice, several Raman fingerprints of β-carotene at 1008, 1159 and 1520 cm-1 were alsohighlighted. Present results resulted interesting for the exclusive use of optical methods forthe quantitative determination of the above-mentioned substances in place of thebiochemical assays generally used for this purpose, which are time consuming and requiredifferent chemical reagents for each of them. View Full-Text
Keywords: Fruit juice; Micro-Raman Spectroscopy; Pectin; Pectinase; Apple; Apricot Fruit juice; Micro-Raman Spectroscopy; Pectin; Pectinase; Apple; Apricot
This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Share & Cite This Article

MDPI and ACS Style

Camerlingo, C.; Zenone, F.; Delfino, I.; Diano, N.; Mita, D.G.; Lepore, M. Investigation on Clarified Fruit Juice Composition by Using Visible Light Micro-Raman Spectroscopy. Sensors 2007, 7, 2049-2061.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top