DNA Biosensor for Rapid Detection of Genotoxic Compounds in Soil Samples
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Apparatus
2.3. Biosensor procedure
- Electrode pre-treatment: the potential applied was +1.6 V for 120 s and +1.8 V for 60 s; electrodes were in 5 mL of 0.25 M acetate buffer containing 10 mM KCl (pH = 4.75) under stirred conditions.
- DNA immobilisation: Electrodes were immersed in 50 ppm Calf thymus dsDNA in 0.25 M acetate buffer with 10 mM KCl and a potential of +0.5 V was applied for 5min under stirred conditions.
- Blank or sample interaction: the incubation step was performed by simply placing 10 μL of the sample solutions onto the working electrode surface for 2 min. Soil samples had been extracted and filtered before the analysis.
- Measurement: a square wave voltammetric scan was carried out to evaluate the oxidation of guanine residues on the electrode surface. The height of the guanine peak (at +0.95 V vs. Ag screen-printed pseudo-reference electrode) was measured. The scan was made in 0.25 M acetate buffer, containing 10 mM KCl using the following parameters: scan from +0.2 V to +1.35 V, Estep = 15 mV, Eamplitude = 40 mV, Frequency = 200 Hz.
2.4. Soil samples
2.5. Statistical analysis
3. Results and discussion
3.1. Analysis of standard solution with DNA biosensor
3.2. Optimisation of the extraction procedure
3.3. Analysis of real soil samples with DNA biosensor
3.4. Optimisation of extraction/emission fixed wavelength fluorescence (FF) for 2-anthramine detection
4. Conclusions
Acknowledgments
References and Notes
- Langdon, C.J.; Piearce, T.G.; Meharg, A.A.; Semple, K.T. Interactions between earthworms and arsenic in the soil environment: a review. Environ. Poll. 2003, 24, 361–373. [Google Scholar]
- Ruby, M.V.; Davis, A.; Schoof, R.; Eberle, S.; Sellstore, C.M. Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environ. Sci. Technol. 1996, 30, 422–430. [Google Scholar]
- Berset, J.D.; Ejem, M.; Holzer, R.; Lisher, P. Comparison of different drying, extraction and detection techniques for the determination of priority polycyclic aromatic hydrocarbons in background contaminated soil samples. Anal. Chim. Acta. 1999, 383, 263–275. [Google Scholar]
- Gfrerer, G.; Serschen, M.; Lankmayr, E. Optimised extraction of polycyclic aromatic hydrocarbons from contaminated soil samples. J. Biochem. Biophys. Methods 2002, 53, 203–216. [Google Scholar]
- Chiti, G.; Marrazza, G.; Mascini, M. Electrochemical DNA biosensor for environmental monitoring. Anal. Chim. Acta. 2001, 427, 155–164. [Google Scholar]
- Lucarelli, F.; Palchetti, I.; Marrazza, G.; Mascini, M. Electrochemical DNA biosensor as a screening tool for the detection of toxicants in water and wastewater samples. Talanta. 2002, 56, 949–957. [Google Scholar]
- Lucarelli, F.; Authier, L.; Bagni, G.; Marrazza, G.; Baussant, T.; Aas, E.; Mascini, M. DNA biosensor investigations in fish bile for use as a biomonitoring tool. Anal. Lett. 2003, 9, 1887–1901. [Google Scholar]
- Esposito, A.; Del Borghi, A.; Vegliò, F. Investigation of naphthalene sulphonate compounds sorption in a soil artificially contaminated using batch and column assays. Waste Manag. 2002, 22, 937–943. [Google Scholar]
- Conte, P.; Agretto, A.; Spaccini, R.; Piccolo, A. Soil remediation: humic acids as natural surfactants in the washing of highly contaminated soils. Environ. Poll. 2005, 135, 512–522. [Google Scholar]
- Avidano, L.; Gamalero, E.; Cossa, G.P.; Carraro, E. Characterisation of soil health in an Italian polluted site by using microorganisms as bioindicators. Appl. Soil Ecol. 2005, in press. [Google Scholar]
- Snyder, R.D.; Arnone, M.R. Putative identification of functional interactions between DNA intercalating agents and topoisomerase II using the V79 in vitro micronucleus assay. Mutat. Res. 2002, 503, 21–35. [Google Scholar]
- Lueke, A.; Juhl-Strauss, U.; Krieger, G.; Witte, I. Synergistic DNA damage by oxidative stress (induced by H2O2) and nongenotoxic environmental chemicals in human fibroblasts. Toxicol. Lett. 2004, 147, 35–43. [Google Scholar]
- Guerin, T.F. The extraction of aged polycyclic aromatic hydrocarbons (PAH) residues from a clay soil using sonication and Soxhlet procedure: a comparative study. J. Environ. Monit. 1999, 1, 63–67. [Google Scholar]
- Kramer, B.K.; Ryan, P.B. Soxhlet and microwave extraction in determining the bioaccessibility of pesticides from soil and model solids. In Proc. 2000 Conf. Hazard. Waste Res.; Denver, Colorado, USA, 2000; pp. 196–210. [Google Scholar]
- Hawthorne, S.B.; Grabanski, C.B.; Martin, E.; Miller, D.J. Comparison of Soxhlet extraction, pressurised liquid extraction, supercritical fluid extraction and subcritical water extraction for environmental solids: recovery, selectivity and effects on sample matrix. J. Chromatogr. A. 2000, 892, 421–433. [Google Scholar]
- Lundsted, S.; van Bavel, B.; Haglund, P.; Tysklind, M.; Oberg, L. Pressurised liquid extraction of polycyclic aromatic hydrocarbons from contaminated soils. J. Chromatogr. A. 2000, 883, 151–162. [Google Scholar]
- Song, Y.F.; Jing, X.; Fleishmann, S.; Wilke, B.M. Comparative study of extraction methods for the determination of PAHs from contaminated soil and sediments. Chemosphere 2002, 48, 993–1001. [Google Scholar]
Compound | Concentration (μmol/L) | S guanine % | Std. dev. (N=4) |
---|---|---|---|
sodium benzenesulfonate (BS) | 100 | 75 | 6 |
50 | 91 | 8 | |
25 | 96 | 6 | |
4-chloroaniline (CA) | 100 | 78 | 8 |
50 | 92 | 6 | |
25 | 85 | 10 | |
3,4-dichloroaniline (DCA) | 100 | 43 | 8 |
50 | 75 | 8 | |
25 | 84 | 6 | |
10 | 97 | 7 | |
2-naphtylamine (NA) | 50 | 54 | 7 |
5 | 61 | 9 | |
1 | 85 | 12 | |
sodium 2-naphtalenesulfonate (NS) | 150 | 47 | 8 |
100 | 58 | 9 | |
50 | 79 | 6 | |
sodium anthraquinone 2-sulfonate monohydrate (AQS) | 25 | 34 | 12 |
10 | 51 | 7 | |
5 | 55 | 9 | |
1 | 90 | 6 | |
2-anthracencarboxylic acid (AAC) | 5 | 42 | 10 |
2 | 61 | 7 | |
1 | 71 | 5 | |
1,2-diamineanthraquinone (DAA) | 5 | 59 | 10 |
2 | 65 | 10 | |
1 | 79 | 6 | |
2-anthramine (AT) | 2.0 | 33 | 10 |
1.0 | 47 | 6 | |
0.5 | 73 | 8 |
Extracting | % Recovery 10 min | % Recovery 30 min | % Recovery 60 min |
---|---|---|---|
EtOH / 25mM PBS + 25mM NaCl pH 9.0 (30:70) | 0 | 15 | 45 |
EtOH | n.p. | n.p. | 32 |
Extracting | % Recovery 1 min | % Recovery 2 min |
---|---|---|
EtOH / H2O (90:10) | 19 | 30 |
50mM PBS pH 7.5 | 22 | 34 |
50mM PBS pH 3.0 | 6 | 7 |
Extracting | % Recovery 1 min | % Recovery 2 min |
---|---|---|
EtOH / H2O (90:10) | 35 | 37 |
50mM PBS pH 7.5 | 76 | 96 |
50mM PBS pH 3.0 | 71 | 88 |
Sample code | DNA biosensor S guanine (%) | Phyto-toxicity Primary roots length (mm) | Genotoxicity Irregular anaphase frequency (%) | Genotoxicity Micro nucleate cells frequency (%) | Comet test Damage class |
---|---|---|---|---|---|
1A | 99 | 32.7 | 0.05 | 0.18 | 1 |
1B | 87 | 36.7 | 0.06 | 0.20 | 1 |
1C | 63 | 18.1 | n.p. | n.p. | n.p. |
2A | 86 | 35.0 | 0.01 | 0.01 | 1 |
3A | 78 | 25.9 | 0.01 | 0.03 | 0 |
3B | 60 | 28.2 | n.p. | n.p. | 0 |
3C | 74 | 22.8 | n.p. | n.p. | 2 |
4A | 82 | 21.9 | 0.46 | 0.09 | n.p. |
4B | 70 | 29.5 | 0.11 | 0.08 | 3 |
4C | 42 | 14.5 | 0.25 | 0.12 | 1 |
4D | 26 | 12.7 | 0.52 | 0.64 | 4 |
Method \ sample code | Control | 1:10 | 1:5 | ACNA |
---|---|---|---|---|
DNA biosensor (S guanine %) | 86 | 30 | 19 | 1 |
Roots length of allium porrum (cm) | 2.0 | 1.5 | 0.7 | 0.5 |
Mitotic anomalies of allium porrum (%) | 0.10 | 0.20 | n.p | 0.20 |
Mortality rate of lumbricus rubellus (%) | 0 | 10 | 25 | 100 |
Lysosomal membrane stability (optical density %) | 100 | 28 | 20 | n.p. |
Ca2+-ATPase activity (densitometric value %) | 100 | 28 | 8 | n.p. |
Metallothionein content (ng/g) | 150000 | 190000 | 210000 | n.p |
© 2005 by MDPI ( http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.
Share and Cite
Bagni, G.; Hernandez, S.; Mascini, M.; Sturchio, E.; Boccia, P.; Marconi, S. DNA Biosensor for Rapid Detection of Genotoxic Compounds in Soil Samples. Sensors 2005, 5, 394-410. https://doi.org/10.3390/s5060394
Bagni G, Hernandez S, Mascini M, Sturchio E, Boccia P, Marconi S. DNA Biosensor for Rapid Detection of Genotoxic Compounds in Soil Samples. Sensors. 2005; 5(6):394-410. https://doi.org/10.3390/s5060394
Chicago/Turabian StyleBagni, Graziana, Silvia Hernandez, Marco Mascini, Elena Sturchio, Priscilla Boccia, and Simona Marconi. 2005. "DNA Biosensor for Rapid Detection of Genotoxic Compounds in Soil Samples" Sensors 5, no. 6: 394-410. https://doi.org/10.3390/s5060394
APA StyleBagni, G., Hernandez, S., Mascini, M., Sturchio, E., Boccia, P., & Marconi, S. (2005). DNA Biosensor for Rapid Detection of Genotoxic Compounds in Soil Samples. Sensors, 5(6), 394-410. https://doi.org/10.3390/s5060394