Direct Electrochemistry of Glucose Oxidase at a Gold Electrode Modified with Single-Wall Carbon Nanotubes
Abstract
:Introduction
Experimental
Reagents and Instruments
Preparation of GOD/SWNTs Modified Electrode
Results and Discussion
Direct electrochemistry of GOD at the SWNT-modified Au electrode
Effect of Scan Rate on the Peak Current and Peak Potential of GOD at an SWNT Film-Modified Electrode
Effect of pH on the Peak Current and Peak Potential of GOD at an SWNT Film-Modified Electrode
Stability of the SWNT Film-Modified Electrode
The surface coverage (Γ ) of GOD on the SWNT Film-Modified Electrode
FT-IR spectra of GOD on the SWNTs Films
Conclusions
Acknowledgements
Reference
- Ajayan, P. M. Nanotubes from Carbon. Chem. Rev. 1999, 99, 1787–1800. [Google Scholar] [CrossRef] [PubMed]
- Saito, S. Carbon Nanotubes for Next-Generation Electronics Devices. Science 1997, 278, 77–78. [Google Scholar] [CrossRef]
- Wong, S. S.; Woolley, A. T.; Joselevich, E.; Cheung, C. L.; Lieber, C.M. Covalently-Functionalized Single-Walled Carbon Nanotube Probe Tips for Chemical Force Microscopy. J. Am. Chem. Soc. 1998, 120, 8557–8558. [Google Scholar] [CrossRef]
- Poncharal, P.; Wang, Z. L.; Ugarte, D.; Heer, W. A. de. Electrostatic Deflections and Electromechanical Resonances of Carbon Nanotubes. Science 1999, 283, 1513–1516. [Google Scholar] [CrossRef] [PubMed]
- Collins, P. G.; Bradley, K.; Ishigami, M.; Zettl, A. Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes. Science 2000, 287, 1801–1804. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.; Franklin, N. R.; Zhou, C.; Chapline, M. G.; Peng, S.; Cho, K.; Dai, H.J. Nanotube Molecular Wires as Chemical Sensors. Science 2000, 287, 622–625. [Google Scholar] [CrossRef] [PubMed]
- Heer, W.A.de. Recent developments in carbon nanotubes. Current Opinion in Solid State and Materials Sciecne 1999, 4, 355–359. [Google Scholar] [CrossRef]
- Odom, T. W.; Huang, J. L.; Kim, P.; Lieber, C.M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 1998, 391, 62–64. [Google Scholar]
- Wilder, J. W. G.; Venema, L. C.; Rinzler, A. G.; Smalley, R. E.; Dekker, C. Electronic structure of atomically resolved carbon nanotubes. Nature 1998, 391, 59–62. [Google Scholar] [CrossRef]
- Campbell, J.K.; Sun, L.; Croods, R.M. Electrochemistry using single carbon nanotubes. J. Am. Chem. Soc. 1999, 121, 3779–3780. [Google Scholar] [CrossRef]
- Sherigara, B.S.; Kulner, W.; D'Souza, F. Electrocatalytic properties and sensor applications of fullerenes and carbon nanotubes. Electroanalysis 2003, 15, 753–771. [Google Scholar] [CrossRef]
- Zhao, Q.; Gan, Z.H.; Zhuang, Q.K. Electrochemical sensors based on carbon nanotubes. Electroanalysis 2002, 14, 1609–1613. [Google Scholar] [CrossRef]
- Wang, J.X.; Li, M.X.; Shi, Z.J.; Li, N.Q.; Gu, Z.N. Investigation of the electrocatalytic behavior of single-wall carbon nanotube films on an Au electrode. Microchem. J. 2002, 73, 325–333. [Google Scholar] [CrossRef]
- Wang, J.X.; Li, M.X.; Shi, Z.J.; Li, N.Q.; Gu, Z.N. Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes. Anal. Chem. 2002, 74, 1993–1997. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.X.; Shi, Z.J.; Li, N.Q.; Gu, Z.N.; Zhuang, Q.K. Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode. Anal. Chem. 2001, 73, 915–920. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.X.; Li, M.X.; Shi, Z.J.; Li, N.Q.; Gu, Z.N. Electrocatalytic oxidation of norepinephine at a glassy carbon electrode modified with single wall carbon nanotubes. Electroanalysis. 2002, 14, 225–230. [Google Scholar] [CrossRef]
- Zhao, Y.D.; Zhang, W.D.; Chen, H.; Luo, Q.M. Anodic oxidation of hydrazine at carbon nanotube powder microelectrode and its detection. Talanta. 2002, 58, 529–534. [Google Scholar] [CrossRef]
- Wang, G.; Xu, J.J.; Chen, H.Y. Interfacing cytochrome c to electrodes with a DNA-carbon nanotube composite film. Electrochem. Comm. 2002, 4, 506–509. [Google Scholar] [CrossRef]
- Zhao, Y.D.; Zhang, W.D.; Chen, H.; Luo, Q.M. Electrocatalytic oxidation of cysteine at carbon nanotube powder microelectrode and its detection. Sensors and Actuators B 2003, 92, 279–285. [Google Scholar] [CrossRef]
- Wang, Z.H.; Wang, Y.M.; Luo, G.A. The electrocatalytic oxidation of thymine at α-cyclodextrin incorporated carbon nanotube-coated electrode. Electroanalysis 2003, 15, 1129–1133. [Google Scholar] [CrossRef]
- Wang, Z.H.; Wang, Y.M.; Luo, G.A. selective voltammetric method for uric acid detection at cyclodextrin modified electrode incorporating carbon nanotubes. Analyst. 2002, 127, 1353–1358. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.H.; Liu, J.; Liang, Q.G.; Wang, Y.M.; Luo, G.A. Carbon nanotube-modified electrodes for the simultaneous determination of dopamine and ascorbic acid. Analyst. 2002, 127, 653–658. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Musameh, M.; Lin, Y. Solubilization of Carbon Nanotubes by Nafion toward the Preparation of Amperometric Biosensors. J. Am. Chem. Soc. 2003, 125, 2408–2409. [Google Scholar] [CrossRef] [PubMed]
- Musameh, M.; Wang, J.; Merkoci, A.; Lin, Y. Low-potential stable NADH detection at carbonnanotube-modified glassy carbon electrodes. Electrochem. Comm. 2002, 4, 743–746. [Google Scholar] [CrossRef]
- Wang, Z.H..; Liang, Q.L.; Wang, Y.M.; Luo, G.A. Carbon nanotube-intercalated graphite electrodes for simultaneous determination of dopamine and serotonin in the presence of ascorbic acid. J. Electroanal. Chem. 2003, 540, 129–134. [Google Scholar] [CrossRef]
- Wu, K.B.; Fei, J.J.; Hu, S.S. Simultaneous determination of dopamine and serotonin on a glassy carbon electrode coated with a film of carbon nanotubes. Anal. Biochem. 2003, 318, 100–106. [Google Scholar] [CrossRef]
- Davis, J.J.; Green, M.L.H.; Hill, H.A.O.; Leung, Y.C.; Sadler, P.J.; Sloan, J.; Xavier, A.V.; Tsang, S.C. The immobilisation of proteins in carbon nanotubes. Inorg. Chim. Acta 1998, 272, 261–266. [Google Scholar] [CrossRef]
- Azamian, B.R.; Davis, J.J.; Coleman, K.S.; Bagshaw, C.B.; Green, M.L.H. Bioelectrochemical single-walled carbon nanotubes. J.Am.Chem.Soc. 2002, 124, 12664–12665. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.J.; Taylor, S.; Fu, K.F.; Lin, Y.; Zhang, D.H.; Hanks, T.W.; Rao, A.M.; Sun, Y.P. Attaching proteins to carbon nanotubes via diimide-activated amidation. Nano Letters 2002, 2, 311–314. [Google Scholar] [CrossRef]
- Guo, Y.Z.; Guadalupe, R. Direct electrochemistry of horseradish peroxidase adsorbed on glassy carbon electrode from organic solutions. Chem.Commun. 1997, 1437–1438. [Google Scholar] [CrossRef]
- Chi, Q.; Zhang, J.D.; Dong, S.J.; Wang, E.K. Direct electrochemistry and surface characterization of glucose oxidase adsorbed on anodized carbon electrodes. Electrochimica Acta. 1994, 39, 2431–2438. [Google Scholar] [CrossRef]
- Zhao, Y.D.; Zhang, W.D.; Chen, H.; Luo, Q.M. Direct electron transfer of glucose oxidase molecules adsorbed onto carbon nanotube powder microelectrode. Anal. Sci. 2002, 18, 939–941. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Ju, H.X. Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode. Biosensors and Bioelectron. 2003, in press. 1–7. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Wang, B.Q.; Dong, S.J.; Wang, E.K. Amperometric glucose biosensor based on lipid film. Biosensors and Bioelectron. 2000, 15, 143–147. [Google Scholar] [CrossRef]
- Sotiropoulou, S.; Gavalas, V.; Vamvakaki, V.; Chaniotakis, N.A. Novel carbon materials in biosensor systems. Biosensors and Bioelectron. 2003, 18, 211–215. [Google Scholar] [CrossRef]
- Shim, M.; Kam, N.W.S.; Chen, R.J.; Li, Y.M.; Dai, H.J. Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Letters 2002, 2, 285–288. [Google Scholar] [CrossRef]
- Rodrigues, C. G.; Wedd, A.G.; Bond, A. M. Electrochemistry of xanthine oxidase at glassy carbon and mercury electrodes. J. Electroanal. Chem. 1991, 312, 131–140. [Google Scholar] [CrossRef]
- Davis, J.J.; Coles, R.J.; Hill, H.A.O. Protein electrochemistry at carbon nanotube electrodes. J. Electroanal. Chem. 1997, 440, 279–282. [Google Scholar] [CrossRef]
- Britto, P. J.; Santhanam, K. S. V.; Ajayan, P. M. Carbon nanotube electrode for oxidation of dopamine. Bioelectrochem. Bioenerg. 1996, 41, 121–125. [Google Scholar] [CrossRef]
- Kumosinski, T.F.; Unruh, J.J. Molecular Modeling; ACS Symp.Ser. 576; Kumosinski, T.F., Leibman, M.M., Eds.; Washington,DC, 1993; pp. 71–98. [Google Scholar]
- Chen, X.H.; Xie, H.; Kong, J.L.; Deng, J.Q. Characterization for didodecyldimethylammonium bromide liquid crystal film entrapping catalase with enhanced direct electron transfer rate. Biosensor and Bioelectron. 2001, 16, 115–120. [Google Scholar] [CrossRef]
- Azamian, B.R.; Davis, J.J.; Coleman, K.S.; Bagshaw, C.B.; Green, M.L.H. Bioelectrochemical single-walled carbon nanotubes. J.Am.Chem.Soc. 2002, 124, 12664–12665. [Google Scholar] [PubMed]
- Zhao, Y.D.; Zhang, W.D.; Chen, H.; Luo, Q.M.; Li, S.F.Y. Direct electrochemistry of horseradish peroxidase at carbon nanotube powder microelectrode. Sensors and Actuators B. 2002, 87, 168–172. [Google Scholar] [CrossRef]
- Sample Availability: Available from the authors.
© 2003 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.
Share and Cite
Liang, W.; Zhuobin, Y. Direct Electrochemistry of Glucose Oxidase at a Gold Electrode Modified with Single-Wall Carbon Nanotubes. Sensors 2003, 3, 544-554. https://doi.org/10.3390/s31200544
Liang W, Zhuobin Y. Direct Electrochemistry of Glucose Oxidase at a Gold Electrode Modified with Single-Wall Carbon Nanotubes. Sensors. 2003; 3(12):544-554. https://doi.org/10.3390/s31200544
Chicago/Turabian StyleLiang, Wang, and Yuan Zhuobin. 2003. "Direct Electrochemistry of Glucose Oxidase at a Gold Electrode Modified with Single-Wall Carbon Nanotubes" Sensors 3, no. 12: 544-554. https://doi.org/10.3390/s31200544
APA StyleLiang, W., & Zhuobin, Y. (2003). Direct Electrochemistry of Glucose Oxidase at a Gold Electrode Modified with Single-Wall Carbon Nanotubes. Sensors, 3(12), 544-554. https://doi.org/10.3390/s31200544