Estimation of Citrus Leaf Relative Water Content Using CWT Combined with Chlorophyll-Sensitive Bands
Abstract
1. Introduction
2. Materials and Methods
2.1. General Situation
2.2. Data and Spectral Collection
2.2.1. Sample Collection
2.2.2. Spectral Acquisition
2.2.3. Chlorophyll Measurement
2.2.4. Chlorophyll Measurement Actual Measurement of Water Content
2.3. Calculation Methods
2.3.1. Continuous Wavelet Transform
2.3.2. Successive Projections Algorithm
2.4. Regression Model and Accuracy Evaluation
3. Results
3.1. Correlation Analysis Between RWC and LCC Based on PLSR
3.2. Comparative Analysis of Prediction Accuracy of Different Wavelet Kernel Functions
3.3. Comparative Analysis of Citrus Leaf RWC and LCC Prediction Models Based on CWT
3.4. Sensitivity Band Analysis of Citrus Leaf Moisture Content and Chlorophyll Based on Feature Optimization
3.5. Analysis of RWC Inversion Results of Citrus Leaves Using RWC–LCC-Sensitive Band Combination
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Junttila, S.; Hölttä, T.; Saarinen, N.; Kankare, V.; Yrttimaa, T.; Hyyppä, J.; Vastaranta, M. Close-range hyperspectral spectroscopy reveals leaf water content dynamics. Remote Sens. Environ. 2022, 277, 113071. [Google Scholar] [CrossRef]
- Peng, Z.G.; Lin, S.Z.; Zhang, B.Z.; Wei, Z.; Liu, L.; Han, N.N.; Cai, J.B.; Chen, H. Winter Wheat Canopy Water Content Monitoring Based on Spectral Transforms and “Three-edge” Parameters. Agric. Water Manag. 2020, 240, 10630. [Google Scholar] [CrossRef]
- Xiao, B.; Li, S.Z.; Dou, S.Q.; He, H.C.; Fu, B.L.; Zhang, T.X.; Sun, W.W.; Yang, Y.L.; Xiong, Y.K.; Shi, J.K.; et al. Comparison of leaf chlorophyll content retrieval performance of citrus using FOD and CWT methods with field-based full-spectrum hyperspectral reflectance data. Comput. Electron. Agric. 2024, 217, 108559. [Google Scholar] [CrossRef]
- Zhang, H.C.; Ge, Y.F.; Xie, X.Y.; Atefi, A.; Wijewardane, N.K.; Thapa, S. High throughput analysis of leaf chlorophyll content in sorghum using RGB, hyperspectral, and fluorescence imaging and sensor fusion. Plant Methods 2022, 18, 60. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, M.S.; Fiorio, P.R.; Takushi, M.R.H.; Oliveira, A.K.d.S.; Garcia, A.C. Effect of different nitrogen fertilization rates on the spectral response of brachiaria brizantha cv. Marandú leaves. Eng. Agrícola 2023, 43, e20220008. [Google Scholar] [CrossRef]
- Zhang, C.; Li, C.; He, M.Y.; Cai, Z.Y.; Feng, Z.P.; Qi, H.N.; Zhou, L. Leaf water content determination of oilseed rape using near-infrared hyperspectral imaging with deep learning regression methods. Infrared Phys. Technol. 2023, 134, 104921. [Google Scholar] [CrossRef]
- Dash, S.S.S.; Lenka, D.; Sahoo, J.P.; Tripathy, S.K.; Samal, K.C.; Lenka, D.; Panda, R.K. Biochemical characterization of maize (Zea mays L.) hybrids under excessive soil moisture stress. Cereal Res. Commun. 2022, 50, 875–884. [Google Scholar] [CrossRef]
- Bai, Y.; Yan, R.; Dai, J.; Wei, Z.; Xia, J.; Yang, H.; Schellenberg, M. Soil moisture impact on biomass partitioning and relative chlorophyll content for legume grass mixtures in a controlled environment. Appl. Ecol. Environ. Res. 2023, 21, 439–450. [Google Scholar] [CrossRef]
- Luis, G.; Aurelio, P.; Ricardo, T.; María, J.; Gabino, S.; Jesús, Q. Relative Water Content, Chlorophyll Index, and Photosynthetic Pigments on Lotus corniculatus L. in Response to Water Deficit. Plants 2024, 13, 961. [Google Scholar] [CrossRef]
- Zhao, R.M.; An, L.L.; Tang, W.J.; Gao, D.H.; Qiao, L.; Li, M.Z.; Sun, H.; Qiao, J.B. Deep learning assisted continuous wavelet transform-based spectrogram for the detection of chlorophyll content in potato leaves. Comput. Electron. Agric. 2022, 195, 106802. [Google Scholar] [CrossRef]
- Wang, Y.C.; Zhang, X.Y.; Jin, Y.T.; Gu, X.H.; Feng, H.; Wang, C. Quantitative Retrieval of Water Content in Winter Wheat Leaves Based on Continuous Wavelet Transform. J. Triticeae Crops 2020, 40, 503–509. [Google Scholar]
- Kong, Y.X.; Liu, Y.P.; Geng, J.H.; Huang, Z.C. Pixel-Level Assessment Model of Contamination Conditions of Composite Insulators Based on Hyperspectral Imaging Technology and a Semi-Supervised Ladder Network. IEEE Trans. Dielectr. Electr. Insul. 2022, 30, 326–335. [Google Scholar] [CrossRef]
- An, C.Q.; Yan, X.; Lu, C.; Zhu, X.H. Effect of spectral pretreatment on qualitative identification of adulterated bovine colostrum by near-infrared spectroscopy. Infrared Phys. Technol. 2021, 118, 103869. [Google Scholar] [CrossRef]
- Zhang, N.N.; Zhang, X.; Shang, P.; Yuan, X.T.; Li, L.; Bai, T.C. Stratified diagnosis of cotton canopy spectral characteristics based on CWT-SPA and its relationship with moisture, nitrogen, and SPAD values. Int. J. Remote Sens. 2024, 45, 325–350. [Google Scholar] [CrossRef]
- Li, K.; Chang, Q.R.; Chen, Q.; Chen, X.K.; Mo, H.Y.; Zhang, Y.D.; Zheng, Z.K. Estimation of Water Content in Canopy Leaf of Winter Wheat Based on Continuous Wavelet Transform Coupled CARS Algorithm. J. Triticeae Crops 2023, 43, 251–258. [Google Scholar]
- Chen, S.M.; Lou, F.C.; Tuo, Y.F.; Tan, S.; Peng, K.L.; Zhang, S.; Wang, Q.J. Prediction of Soil Water Content Based on Hyperspectral Reflectance Combined with Competitive Adaptive Reweighted Sampling and Random Frog Feature Extraction and the Back-Propagation Artificial Neural Network Method. Water 2023, 15, 2726. [Google Scholar] [CrossRef]
- Chen, F.F.; Chen, C.; Li, W.R.; Xiao, M.; Yang, B.; Yan, Z.W.; Rui, G.; Zhang, S.L.; Han, H.J.; Chen, C.; et al. Rapid detection of seven indexes in sheep serum based on Raman spectroscopy combined with DOSC-SPA-PLSR-DS model. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 248, 119260. [Google Scholar] [CrossRef] [PubMed]
- Krepper, G.; Romeo, F.; de Sousa Fernandes, D.D.; Diniz, P.H.G.D.; de Araújo, M.C.U.; Di Nezio, M.S.; Pistonesi, M.F.; Centurión, M.E. Determination of fat content in chicken hamburgers using NIR spectroscopy and the Successive Projections Algorithm for interval selection in PLS regression (iSPA-PLS). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 189, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.P.; Ding, J.L.; Wang, J.Z.; Ge, X.Y. Prediction of soil organic matter in northwestern China using fractional-order derivative spectroscopy and modified normalized difference indices. Catena 2020, 185, 104257. [Google Scholar] [CrossRef]
- Liu, Y.D.; Cheng, M.J.; Hao, Y.; Zhang, Y.; Hou, Z.G. Quantitative Analysis of Chlorophyll Content in Citrus Leaves by Raman Spectroscopy. Spectrosc. Spectr. Anal. 2019, 39, 1768–1772. [Google Scholar]
- Cheng, Z.Q.; Zhang, J.S.; Meng, P.; Li, Y.Q.; Wang, H.S.; Li, C.Y. Hyperspectral Estimation Model of Chlorophyll Content in Poplar Leaves. Trans. Chin. Soc. Agric. Mach. 2015, 46, 264–271. [Google Scholar]
- Lin, D.; Li, G.Z.; Zhu, Y.D.; Liu, H.T.; Li, L.T.; Fahad, S.; Zhang, X.Y.; Wei, C.; Jiao, Q.J. Predicting copper content in chicory leaves using hyperspectral data with continuous wavelet transforms and partial least squares. Comput. Electron. Agric. 2021, 187, 106293. [Google Scholar] [CrossRef]
- Hong, Y.S.; Munnaf, M.A.; Guerrero, A.; Chen, S.C.; Liu, Y.L.; Shi, Z.; Mouazen, A.M. Fusion of visible-to-near-infrared and mid-infrared spectroscopy to estimate soil organic carbon. Soil Tillage Res. 2022, 217, 105284. [Google Scholar] [CrossRef]
- Canova, L.D.S.; Vallese, F.D.; Pistonesi, M.F.; de Araújo Gomes, A. An improved successive projections algorithm version to variable selection in multiple linear regression. Anal. Chim. Acta 2023, 1274, 341560. [Google Scholar] [CrossRef]
- Song, Z.; Liu, Y.; Yu, J.; Guo, Y.; Jiang, D.; Zhang, Y.; Guo, Z.; Chang, Q. Estimation of Chlorophyll Content in Apple Leaves Infected with Mosaic Disease by Combining Spectral and Textural Information Using Hyperspectral Images. Remote Sens. 2024, 16, 2190. [Google Scholar] [CrossRef]
- Dou, S.Q.; Zhang, W.J.; Deng, Y.X.; Zhang, C.H.; Mei, Z.M.; Yan, J.C.; Li, M.L. Comparison of Citrus Leaf Water Content Estimations Based on the Continuous Wavelet Transform and Fractional Derivative Methods. Horticulturae 2024, 10, 177. [Google Scholar] [CrossRef]
- Guo, A.T.; Huang, W.J.; Qian, B.X.; Ye, H.C.; Jiao, Q.J.; Cheng, X.Z.; Ruan, C. A hybrid model coupling PROSAIL and continuous wavelet transform based on multi-angle hyperspectral data improves maize chlorophyll retrieval. Int. J. Appl. Earth Obs. Geoinf. 2024, 132, 104076. [Google Scholar] [CrossRef]
- Wang, X.P.; Shi, J.M. Leaf chlorophyll content is the crucial factor for the temporal and spatial variation of global plants leaf maximum carboxylation rate. Sci. Total Environ. 2024, 927, 172280. [Google Scholar] [CrossRef] [PubMed]
- Li, L.J.; Shi, Y.; Guo, J.X. Inversion of Chlorophyll and Water Content of Hami Melon Leaves Based on Spectrophotometry on Study. Spectrosc. Spectr. Anal. 2024, 44, 2296–2302. [Google Scholar]
- Li, J.T.; Wijewardane, N.K.; Ge, Y.F.; Shi, Y.Y. Improved chlorophyll and water content estimations at leaf level with a hybrid radiative transfer and machine learning model. Comput. Electron. Agric. 2023, 206, 107669. [Google Scholar] [CrossRef]
- Zhang, X.N.; Wang, L.L.; Niu, M.X.; Zhan, N.; Ren, H.J.; Xu, H.C.; Yang, K.; Wu, L.Q.; Ke, J.; You, C.C.; et al. Estimation of rice leaf water content based on leaf reflectance spectrum and chlorophyll fluorescence. Acta Agric. Zhejiangensis 2023, 35, 1265–1277. [Google Scholar]
- Huang, Y.Z.; Qiu, B.W.; Chen, C.C.; Zhu, X.L.; Wu, W.B.; Jiang, F.C.; Lin, D.D.; Peng, Y.F. Automated soybean mapping based on canopy water content and chlorophyll content using Sentinel-2 images. Int. J. Appl. Earth Obs. Geoinf. 2022, 109, 102801. [Google Scholar] [CrossRef]
- Falcioni, R.; Moriwaki, T.; Pattaro, M.; Furlanetto, R.H.; Nanni, M.R.; Antunes, W.C. High resolution leaf spectral signature as a tool for foliar pigment estimation displaying potential for species differentiation. J. Plant Physiol. 2020, 249, 15316. [Google Scholar] [CrossRef]
- El-Hendawy, S.E.; Al-Suhaibani, N.A.; Elsayed, S.; Hassan, W.M.; Dewir, Y.H.; Refay, Y.; Abdella, K.A. Potential of the existing and novel spectral reflectance indices for estimating the leaf water status and grain yield of spring wheat exposed to different irrigation rates. Agric. Water Manag. 2019, 217, 356–373. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, J.B.; Wang, A.Z. Comparison of various approaches for estimating leaf water content and stomatal conductance in different plant species using hyperspectral data. Ecol. Indic. 2022, 142, 109278. [Google Scholar] [CrossRef]
- Zhao, X.H.; Zhang, J.C.; Pu, R.L.; Shu, Z.F.; He, W.Z.; Wu, K.H. The continuous wavelet projections algorithm: A practical spectral-feature-mining approach for crop detection. Crop. J. 2022, 10, 1264–1273. [Google Scholar] [CrossRef]
- Li, C.C.; Shi, M.M.; Ma, C.Y.; Cui, Y.Q.; Wang, Y.L.; Li, Y.C. Estimation of Chlorophyll Content in Winter Wheat Based on Wavelet Transform and Fractional Differential. Trans. Agric. Mach. 2021, 52, 172–182. [Google Scholar]








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Qi, X.; Li, Y.; Dou, S.; Li, W.; Yang, Y.; Wei, M. Estimation of Citrus Leaf Relative Water Content Using CWT Combined with Chlorophyll-Sensitive Bands. Sensors 2026, 26, 467. https://doi.org/10.3390/s26020467
Qi X, Li Y, Dou S, Li W, Yang Y, Wei M. Estimation of Citrus Leaf Relative Water Content Using CWT Combined with Chlorophyll-Sensitive Bands. Sensors. 2026; 26(2):467. https://doi.org/10.3390/s26020467
Chicago/Turabian StyleQi, Xiangqian, Yanfang Li, Shiqing Dou, Wei Li, Yanqing Yang, and Mingchao Wei. 2026. "Estimation of Citrus Leaf Relative Water Content Using CWT Combined with Chlorophyll-Sensitive Bands" Sensors 26, no. 2: 467. https://doi.org/10.3390/s26020467
APA StyleQi, X., Li, Y., Dou, S., Li, W., Yang, Y., & Wei, M. (2026). Estimation of Citrus Leaf Relative Water Content Using CWT Combined with Chlorophyll-Sensitive Bands. Sensors, 26(2), 467. https://doi.org/10.3390/s26020467

