Crowdsourcing Framework for Security Testing and Verification of Industrial Cyber-Physical Systems
Abstract
1. Introduction
- A distributed ICPS testing and verification architecture tailored for crowdsourced execution. We design a testing and verification architecture for a four-layer cloud-based ICPS that decouples the system under test from the testing crowd via standardized test and verification ports, a shared test object model, and a dynamic test–task management mechanism. This allows heterogeneous testing agents deployed in different networks to exercise the same ICPS deployment without requiring intrusive instrumentation of industrial controllers.
- A delay-aware input–output testing and verification framework for distributed ICPS. We propose a protocol-agnostic, template-driven testing and verification framework that explicitly models spatially distributed inputs and outputs, maintains a hash-based pool of in-flight test objects, and tolerates random communication delays and out-of-order responses. This design ensures that each sent request can still be matched to its corresponding response and checked even under asynchronous conditions, thereby achieving a 100% valid verification rate in our experiments.
- A concurrent testing architecture with optional LLM-assisted thread control. We implement asynchronous sender and verifier groups with bucket-locked access to the test object pool, together with an optional LLM-assisted thread controller that adapts the number of sending threads based on observed throughput. On an ICPS-like workload, the resulting framework improves effective verification throughput by up to 2.6 times compared with Apache JMeter, while maintaining the same or higher valid verification rate.
2. Related Work
2.1. Distributed Input–Output Testing
2.2. Asynchronous Concurrent Test
2.3. LLM-Assisted Software Testing
3. The Design
3.1. System Architecture
3.2. Dynamic Test–Task Management Model
3.2.1. Test Payload Generator
3.2.2. New Test Object
3.2.3. Test Object Pool Addition
3.2.4. Remove Expired Test Objects
3.3. Asynchronous Concurrent Testing Model
3.3.1. Test Sender Group
3.3.2. Test Verifier Group
3.3.3. LLM-Assisted Thread Controller
4. The Implementation
4.1. Test Payload Generation
| Algorithm 1 Test payload generating |
|
4.2. Concurrent Test Payload Sending
| Algorithm 2 Concurrent test payload sending |
|
4.3. Timeout Test Payload Management
| Algorithm 3 Timeout test payload management |
|
4.4. Concurrent Retrieval and Asynchronous Analysis of Test Results
| Algorithm 4 Concurrent retrieval and asynchronous analysis of test results |
|
5. Evaluation
5.1. System Configuration
5.2. Evaluation of Valid Testing and Verification Rate
5.3. Evaluation of Successful Verification Count
5.4. Evaluation of Data Verification Speed
5.5. Discussion of ICPS-Specific Metrics
5.6. Scalability and Complexity Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pivoto, D.G.S.; de Almeida, L.F.F.; da Rosa Righi, R.; Rodrigues, J.J.P.C.; Lugli, A.B.; Alberti, A.M. Cyber-physical systems architectures for industrial internet of things applications in Industry 4.0: A literature review. J. Manuf. Syst. 2021, 58, 176–192. [Google Scholar] [CrossRef]
- Wu, K.; Xu, J.; Zheng, M. Industry 4.0: Review and proposal for implementing a smart factory. Int. J. Adv. Manuf. Technol. 2024, 133, 1331–1347. [Google Scholar] [CrossRef]
- Zion Market Research. Cyber-Physical Systems (CPS) Market Size, Share, Trends, and Research. 2025. Available online: https://www.zionmarketresearch.com/report/cyber-physical-systems-market (accessed on 17 November 2025).
- Feng, X.; Zhu, X.; Han, Q.-L.; Zhou, W.; Wen, S.; Xiang, Y. Detecting Vulnerability on IoT Device Firmware: A survey. IEEE/CAA J. Autom. Sin. 2022, 10, 25–41. [Google Scholar] [CrossRef]
- Haghighi, M.S.; Farivar, F.; Jolfaei, A.; Asl, A.B.; Zhou, W. Cyber Attacks via Consumer Electronics: Studying the Threat of Covert Malware in Smart and Autonomous Vehicles. IEEE Trans. Consum. Electron. 2023, 69, 825–832. [Google Scholar] [CrossRef]
- Jiang, Y.; Wu, S.; Ma, R.; Liu, M.; Luo, H.; Kaynak, O. Monitoring and Defense of Industrial Cyber-Physical Systems Under Typical Attacks: From a Systems and Control Perspective. IEEE Trans. Ind. Cyber-Physical Syst. 2023, 1, 192–207. [Google Scholar] [CrossRef]
- Chen, X.; Li, C.; Wang, D.; Wen, S.; Zhang, J.; Nepal, S.; Xiang, Y.; Ren, K. Android HIV: A Study of Repackaging Malware for Evading Machine-Learning Detection. IEEE Trans. Inf. Forensics Secur. 2019, 15, 987–1001. [Google Scholar] [CrossRef]
- Benmalek, M. Ransomware on cyber-physical systems: Taxonomies, case studies, security gaps, and open challenges. Internet Things Cyber-Physical Syst. 2024, 4, 186–202. [Google Scholar] [CrossRef]
- Sheng, C.; Zhou, W.; Han, Q.-L.; Ma, W.; Zhu, X.; Wen, S.; Xiang, Y. Network Traffic Fingerprinting for IIoT Device Identification: A Survey. IEEE Trans. Ind. Informatics 2025, 21, 3541–3554. [Google Scholar] [CrossRef]
- Stojmenovic, I.; Wen, S.; Huang, X.; Luan, H. An overview of Fog computing and its security issues. Concurr. Comput. Pr. Exp. 2016, 28, 2991–3005. [Google Scholar] [CrossRef]
- Zhu, X.; Zhou, W.; Han, Q.-L.; Ma, W.; Wen, S.; Xiang, Y. When Software Security Meets Large Language Models: A Survey. Ieee/caa J. Autom. Sin. 2025, 12, 317–334. [Google Scholar] [CrossRef]
- Zou, Y.; Bai, J.-J.; Jiang, Z.-M.; Zhao, M.; Zhou, D. Blackbox Fuzzing of Distributed Systems with Multi-Dimensional Inputs and Symmetry-Based Feedback Pruning. In Proceedings of the Network and Distributed System Security Symposium (NDSS), Copenhagen, Denmark, 24–28 February 2025; pp. 1–17. [Google Scholar] [CrossRef]
- Meng, R.; Pîrlea, G.; Roychoudhury, A.; Sergey, I. Greybox Fuzzing of Distributed Systems. In Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security, New York, NY, USA, 26–30 November 2023; pp. 1615–1629. [Google Scholar] [CrossRef]
- Lyu, T.; Zhang, L.; Feng, Z.; Pan, Y.; Ren, Y.; Xu, M.; Payer, M.; Kashyap, S. Monarch: A Fuzzing Framework for Distributed File Systems. In Proceedings of the 2024 USENIX Annual Technical Conference (USENIX ATC 24), Santa Clara, CA, 10–12 July 2024; pp. 529–543. [Google Scholar]
- Fernando, V.; Joshi, K.; Laurel, J.; Misailovic, S. Diamont: Dynamic monitoring of uncertainty for distributed asynchronous programs. Int. J. Softw. Tools Technol. Transf. 2023, 25, 521–539. [Google Scholar] [CrossRef]
- Wang, J.; Pham, H.V.; Li, Q.; Tan, L.; Guo, Y.; Aziz, A.; Meijer, E. D3: Differential Testing of Distributed Deep Learning With Model Generation. IEEE Trans. Softw. Eng. 2025, 51, 38–52. [Google Scholar] [CrossRef]
- Mahe, E.; Bannour, B.; Gaston, C.; Le Gall, P. Efficient interaction-based offline runtime verification of distributed systems with lifeline removal. Sci. Comput. Program. 2025, 241, 103230. [Google Scholar] [CrossRef]
- Bytes, A.; Rajput, P.H.N.; Doumanidis, C.; Maniatakos, M.; Zhou, J.; Tippenhauer, N.O. FieldFuzz: In Situ Blackbox Fuzzing of Proprietary Industrial Automation Runtimes via the Network. In Proceedings of the 26th International Symposium on Research in Attacks, Intrusions and Defenses, Hong Kong, China, 16–18 October 2023; pp. 499–512. [Google Scholar]
- Zhu, X.; Wen, S.; Camtepe, S.; Xiang, Y. Fuzzing: A Survey for Roadmap. ACM Comput. Surv. 2022, 54, 1–36. [Google Scholar] [CrossRef]
- Jang, D.; Askar, A.; Yun, I.; Tong, S.; Cai, Y.; Kim, T. Fuzzing@Home: Distributed Fuzzing on Untrusted Heterogeneous Clients. In Proceedings of the 25th International Symposium on Research in Attacks, Intrusions and Defenses, Limassol, Cyprus, 26–28 October 2022; pp. 1–16. [Google Scholar] [CrossRef]
- Chen, Y.; Zhong, R.; Yang, Y.; Hu, H.; Wu, D.; Lee, W. µFUZZ: Redesign of parallel fuzzing using microservice architecture. In Proceedings of the 32nd USENIX Conference on Security Symposium, Anaheim, CA, USA, 9–11 August 2023; pp. 1325–1342. [Google Scholar]
- Audrito, G.; Damiani, F.; Stolz, V.; Torta, G.; Viroli, M. Distributed runtime verification by past-CTL and the field calculus. J. Syst. Softw. 2022, 187, 111251. [Google Scholar] [CrossRef]
- Momtaz, A.; Abbas, H.; Bonakdarpour, B. Monitoring Signal Temporal Logic in Distributed Cyber-physical Systems. In Proceedings of the ACM/IEEE 14th International Conference on Cyber-Physical Systems (with CPS-IoT Week 2023), San Antonio, TX, USA, 9–12 May 2023; pp. 154–165. [Google Scholar] [CrossRef]
- Wolff, D.; Shi, Z.; Duck, G.J.; Mathur, U.; Roychoudhury, A. Greybox Fuzzing for Concurrency Testing. In Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, La Jolla, CA, USA, 27 April–1 May 2024; Volume 2, pp. 482–498. [Google Scholar] [CrossRef]
- Zhao, H.; Wolff, D.; Mathur, U.; Roychoudhury, A. Selectively Uniform Concurrency Testing. In Proceedings of the 30th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Rotterdam, The Netherlands, 30 March–3 April 2025; Volume 1, pp. 1003–1019. [Google Scholar]
- Ang, Z.; Mathur, U. Predictive Monitoring against Pattern Regular Languages. Proc. Acm Program. Lang. 2024, 8, 2191–2225. [Google Scholar] [CrossRef]
- Ganguly, R.; Xue, Y.; Jonckheere, A.; Ljung, P.; Schornstein, B.; Bonakdarpour, B.; Herlihy, M. Distributed Runtime Verification of Metric Temporal Properties. J. Parallel Distrib. Comput. 2024, 185, 104801. [Google Scholar] [CrossRef]
- Bonakdarpour, B.; Fraigniaud, P.; Rajsbaum, S.; Rosenblueth, D.; Travers, C. Decentralized Asynchronous Crash-resilient Runtime Verification. J. ACM 2022, 69, 1–31. [Google Scholar] [CrossRef]
- Tahir, A.; Rasheed, S.; Dietrich, J.; Hashemi, N.; Zhang, L. Test Flakiness’ Causes, Detection, Impact and Responses: A Multivocal Review. J. Syst. Softw. 2023, 206, 111837. [Google Scholar] [CrossRef]
- Parry, O.; Kapfhammer, G.M.; Hilton, M.; McMinn, P. Empirically Evaluating Flaky Test Detection Techniques Combining Test Case Rerunning and Machine Learning Models. Empir. Softw. Eng. 2023, 28, 1–52. [Google Scholar] [CrossRef]
- Yuan, M.; Zhao, B.; Li, P.; Liang, J.; Han, X.; Luo, X.; Zhang, C. DDRace: Finding concurrency UAF vulnerabilities in Linux drivers with directed fuzzing. In Proceedings of the 32nd USENIX Conference on Security Symposium, Anaheim, CA, USA, 9–11 August 2023; pp. 2849–2866. [Google Scholar]
- Ito, H.; Matsubara, Y.; Takada, H. Schfuzz: Detecting Concurrency Bugs with Feedback-Guided Fuzzing. In Proceedings of the 18th International Conference on Evaluation of Novel Approaches to Software Engineering, INSTICC, Prague, Czech Republic, 24–25 April 2023; pp. 273–282. [Google Scholar] [CrossRef]
- Ito, H.; Matsubara, Y.; Takada, H. Race Directed Fuzzing for More Effective Concurrency Testing. In Proceedings of the 2024 The 6th World Symposium on Software Engineering (WSSE), Kyoto, Japan, 13–15 September 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Jiang, Z.M.; Bai, J.J.; Lu, K.; Hu, S.M. Context-sensitive and directional concurrency fuzzing for data-race detection. In Proceedings of the Network and Distributed Systems Security (NDSS) Symposium 2022, San Diego, CA, USA, 24–28 April 2022; pp. 1–18. [Google Scholar]
- Wang, J.; Huang, Y.; Chen, C.; Liu, Z.; Wang, S.; Wang, Q. Software Testing With Large Language Models: Survey, Landscape, and Vision. IEEE Trans. Softw. Eng. 2024, 50, 911–936. [Google Scholar] [CrossRef]
- Li, Y.; Liu, P.; Wang, H.; Chu, J.; Wong, W.E. Evaluating Large Language Models for Software Testing. Comput. Stand. Interfaces 2025, 93, 103942. [Google Scholar] [CrossRef]
- Rehan, S.; Al-Bander, B.; Ahmad, A.A.-S. Harnessing Large Language Models for Automated Software Testing: A Leap Towards Scalable Test Case Generation. Electronics 2025, 14, 1463. [Google Scholar] [CrossRef]
- Celik, A.; Mahmoud, Q.H. A Review of Large Language Models for Automated Test Case Generation. Mach. Learn. Knowl. Extr. 2025, 7, 97. [Google Scholar] [CrossRef]
- Yuan, Z.; Liu, M.; Ding, S.; Wang, K.; Chen, Y.; Peng, X.; Lou, Y. Evaluating and Improving ChatGPT for Unit Test Generation. Proc. ACM Softw. Eng. 2024, 1, 1703–1726. [Google Scholar] [CrossRef]
- Li, T.; Cui, C.; Huang, R.; Towey, D.; Ma, L. Large Language Models for Automated Web-Form-Test Generation: An Empirical Study. ACM Trans. Softw. Eng. Methodol. 2025, 1703–1726, Just Accepted. [Google Scholar]
- Zhao, X.; Wang, H.; Ding, J.; Hu, Z.; Tian, Q.; Wang, Y. Augmenting software quality assurance with AI and automation using PyTest-BDD. Autom. Softw. Eng. 2025, 33, 1–44. [Google Scholar] [CrossRef]
- Schäfer, M.; Nadi, S.; Eghbali, A.; Tip, F. An Empirical Evaluation of Using Large Language Models for Automated Unit Test Generation. IEEE Trans. Softw. Eng. 2024, 50, 85–105. [Google Scholar] [CrossRef]
- Dakhel, A.M.; Nikanjam, A.; Majdinasab, V.; Khomh, F.; Desmarais, M.C. Effective test generation using pre-trained Large Language Models and mutation testing. Inf. Softw. Technol. 2024, 171, 107468. [Google Scholar] [CrossRef]
- Kang, S.; Yoon, J.; Yoo, S. Large Language Models are Few-shot Testers: Exploring LLM-based General Bug Reproduction. In Proceedings of the 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE), Melbourne, Australia, 14–20 May 2023; pp. 2312–2323. [Google Scholar] [CrossRef]
- Meng, R.; Mirchev, M.; Böhme, M.; Roychoudhury, A. Large language model guided protocol fuzzing. In Proceedings of the 31st Annual Network and Distributed System Security Symposium (NDSS), San Diego, CA, USA, 26 February–1 March 2024; pp. 1–17. [Google Scholar]
- Zhou, W.; Zhu, X.; Han, Q.-L.; Li, L.; Chen, X.; Wen, S.; Xiang, Y. The Security of Using Large Language Models - A Survey with Emphasis on ChatGPT. Ieee/caa J. Autom. Sin. 2025, 12, 1–26. [Google Scholar] [CrossRef]
- Deng, Z.; Ma, W.; Han, Q.-L.; Zhou, W.; Zhu, X.; Wen, S.; Xiang, Y. Exploring DeepSeek: A Survey on Advances, Applications, Challenges and Future Directions. Ieee/caa J. Autom. Sin. 2025, 12, 872–893. [Google Scholar] [CrossRef]
- Deng, Z.; Sun, R.; Xue, M.; Ma, W.; Wen, S.; Nepal, S.; Yang, X. Hardening LLM Fine-Tuning: From Differentially Private Data Selection to Trustworthy Model Quantization. IEEE Trans. Inf. Forensics Secur. 2025, 20, 7211–7226. [Google Scholar] [CrossRef]







| Method | Thread Count | Verification Rate for Different Delay | |
|---|---|---|---|
| 0 ms | 1 ∼10 ms | ||
| Baseline | 1 | 100 % | N/A |
| 2 | 73.91% | N/A | |
| 4 | 54.05% | N/A | |
| Apache JMeter | 1 | 100% | N/A |
| 2 | 87.72% | N/A | |
| 4 | 63.19% | N/A | |
| Locust | 1 | 100% | 66.67% |
| 2 | 99.94% | 66.67% | |
| 4 | 98.86% | 66.85% | |
| Our Method | 2 | 100% | 100% |
| 4 | 100% | 100% | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Li, Z.; Ding, Y.; Zhao, R.; Wang, S.; Li, J. Crowdsourcing Framework for Security Testing and Verification of Industrial Cyber-Physical Systems. Sensors 2026, 26, 79. https://doi.org/10.3390/s26010079
Li Z, Ding Y, Zhao R, Wang S, Li J. Crowdsourcing Framework for Security Testing and Verification of Industrial Cyber-Physical Systems. Sensors. 2026; 26(1):79. https://doi.org/10.3390/s26010079
Chicago/Turabian StyleLi, Zhenyu, Yong Ding, Ruwen Zhao, Shuo Wang, and Jun Li. 2026. "Crowdsourcing Framework for Security Testing and Verification of Industrial Cyber-Physical Systems" Sensors 26, no. 1: 79. https://doi.org/10.3390/s26010079
APA StyleLi, Z., Ding, Y., Zhao, R., Wang, S., & Li, J. (2026). Crowdsourcing Framework for Security Testing and Verification of Industrial Cyber-Physical Systems. Sensors, 26(1), 79. https://doi.org/10.3390/s26010079

