Gait Parameters of Women Before Knee Joint Arthritis—Analysis Using the MoKA System
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Setup
2.3. Experimental Protocol
2.4. Processing Date
2.5. Statistical Analysis
- A single-factor analysis was performed for repeated measurements.
- Between-subject and within-subject variances were calculated.
- Next, the ICC was calculated using the formula:
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vos, T.; Barber, R.M.; Bell, B.; Bertozzi-Villa, A.; Biryukov, S.; Bolliger, I.; Charlson, F.; Davis, A.; Degenhardt, L.; Dicker, D.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015, 386, 743–800. [Google Scholar] [CrossRef]
- Ackerman, I.N.; Bohensky, M.A.; Zomer, E.; Tacey, M.; Gorelik, A.; Brand, C.A.; de Steiger, R. The projected burden of primary total knee and hip replacement for osteoarthritis in Australia to the year 2030. BMC Musculoskelet. Disord. 2019, 20, 90. [Google Scholar] [CrossRef] [PubMed]
- Giorgino, R.; Albano, D.; Fusco, S.; Peretti, G.M.; Mangiavini, L.; Messina, C. Knee Osteoarthritis: Epidemiology, Pathogenesis, and Mesenchymal Stem Cells: What Else Is New? An Update. Int. J. Mol. Sci. 2023, 24, 6405. [Google Scholar] [CrossRef] [PubMed]
- Cooper, C.; Snow, S.; McAlindon, T.E.; Kellingray, S.; Stuart, B.; Coggon, D.; Dieppe, P.A. Risk factors for the incidence and progression of radiographic knee osteoarthritis. Arthritis Rheum. Off. J. Am. Coll. Rheumatol. 2000, 43, 995–1000. [Google Scholar] [CrossRef]
- Nishimura, A.; Hasegawa, M.; Kato, K.; Yamada, T.; Uchida, A.; Sudo, A. Risk factors for the incidence and progression of radiographic osteoarthritis of the knee among Japanese. Int. Orthop. 2011, 35, 839–843. [Google Scholar] [CrossRef]
- Restuccia, R.; Ruggieri, D.; Magaudda, L.; Talotta, R. The preventive and therapeutic role of physical activity in knee osteoarthritis. Reumatismo 2022, 74, 1–21. [Google Scholar] [CrossRef]
- Jin, X.; Beguerie, J.R.; Zhang, W.; Blizzard, L.; Otahal, P.; Jones, G.; Ding, C. Circulating C reactive protein in osteoarthritis: A systematic review and meta-analysis. Ann. Rheum. Dis. 2015, 74, 703–710. [Google Scholar] [CrossRef]
- Stannus, O.P.; Jones, G.; Blizzard, L.; Cicuttini, F.M.; Ding, C. Associations between serum levels of inflammatory markers and change in knee pain over 5 years in older adults: A prospective cohort study. Ann. Rheum. Dis. 2013, 72, 535–540. [Google Scholar] [CrossRef]
- Fransen, M.; McConnell, S.; Harmer, A.R.; Van der Esch, M.; Simic, M.; Bennell, K.L. Exercise for osteoarthritis of the knee: A Cochrane systematic review. Br. J. Sports Med. 2015, 49, 1554–1557. [Google Scholar] [CrossRef]
- Skou, S.T.; Roos, E.M. Physical therapy for patients with knee and hip osteoarthritis: Supervised, active treatment is current best practice. Clin. Exp. Rheumatol. 2019, 37, 112–117. [Google Scholar] [PubMed]
- Llen, K.D. Cost-effectiveness of physical activity and exercise therapy programs for knee osteoarthritis: Making the case for health plan coverage. Osteoarthr. Cartil. 2020, 28, 719–720. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Simpson, J.A.; Wluka, A.E.; Teichtahl, A.J.; English, D.R.; Giles, G.G.; Graves, S.; Cicuttini, F.M. Is physical activity a risk factor for primary knee or hip replacement due to osteoarthritis? A prospective cohort study. J. Rheumatol. 2011, 38, 350–357. [Google Scholar] [CrossRef]
- Migliorini, F.; Pintore, A.; Torsiello, E.; Oliva, F.; Spiezia, F.; Maffulli, N. Intensive Physical Activity Increases the Risk of Knee and Hip Arthroplasty: A Systematic Review. Sports Med. Arthrosc. Rev. 2022, 30, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Roos, E.M.; Arden, N.K. Strategies for the prevention of knee osteoarthritis. Nat. Rev. Rheumatol. 2016, 12, 92–101. [Google Scholar] [CrossRef]
- Machado, G.P.; Gignac, M.A.; Badley, E.M. Participation restrictions among older adults with osteoarthritis: A mediated model of physical symptoms, activity limitations, and depression. Arthritis Rheum. 2008, 59, 129–135. [Google Scholar] [CrossRef]
- Wilkie, R.; Peat, G.; Thomas, E.; Croft, P. Factors associated with restricted mobility outside the home in community-dwelling adults ages fifty years and older with knee pain: An example of use of the International Classification of Functioning to investigate participation restriction. Arthritis Rheum. 2007, 57, 1381–1389. [Google Scholar] [CrossRef]
- Tan, J.S.; Beheshti, B.K.; Binnie, T.; Davey, P.; Caneiro, J.P.; Kent, P.; Smith, A.; O’Sullivan, P.; Campbell, A. Human Activity Recognition for People with Knee Osteoarthritis-A Proof-of-Concept. Sensors 2021, 21, 3381. [Google Scholar] [CrossRef]
- Horecka, A.; Hordyjewska, A.; Blicharski, T.; Kurzepa, J. Osteoarthritis of the knee—Biochemical aspect of applied therapies: A review. Bosn. J. Basic. Med. Sci. 2022, 22, 488–498. [Google Scholar] [CrossRef]
- Calliess, T.; Bocklage, R.; Karkosch, R.; Marschollek, M.; Windhagen, H.; Schulze, M. Clinical Evaluation of a Mobile Sensor-Based Gait Analysis Method for Outcome Measurement after Knee Arthroplasty. Sensors 2014, 14, 15953–15964. [Google Scholar] [CrossRef] [PubMed]
- Kluge, F.; Hannink, J.; Pasluosta, C.; Klucken, J.; Gaßner, H.; Gelse, K.; Eskofier, B.M.; Krinner, S. Pre-operative sensor-based gait parameters predict functional outcome after total knee arthroplasty. Gait Posture 2018, 66, 194–200. [Google Scholar] [CrossRef]
- Fransen, B.L.; Pijnappels, M.; Butter, I.K.; Burger, B.J.; van Dieën, J.H.; Hoozemans, M.J.M. Patients’ perceived walking abilities, daily-life gait behavior and gait quality before and 3 months after total knee arthroplasty. Arch. Orthop. Trauma. Surg. 2022, 142, 1189–1196. [Google Scholar] [CrossRef]
- Dobson, F.; Hinman, R.S.; Hall, M.; Terwee, C.B.; Roos, E.M.; Bennell, K.L. Measurement properties of performance-based measures to assess physical function in hip and knee osteoarthritis: A systematic review. Osteoarthr. Cartil. 2012, 20, 1548–1562. [Google Scholar] [CrossRef]
- Dobson, F.; Hinman, R.S.; Roos, E.M.; Abbott, J.H.; Stratford, P.; Davis, A.M.; Buchbinder, R.; Snyder-Mackler, L.; Henrotin, Y.; Thumboo, J.; et al. OARSI recommended performance-based tests to assess physical function in people diagnosed with hip or knee osteoarthritis. Osteoarthr. Cartil. 2013, 21, 1042–1552. [Google Scholar] [CrossRef]
- Palazzo, L.; Suglia, V.; Grieco, S.; Buongiorno, D.; Brunetti, A.; Carnimeo, L.; Amitrano, F.; Coccia, A.; Pagano, G.; D’Addio, G.; et al. A Deep Learning-Based Framework Oriented to Pathological Gait Recognition with Inertial Sensors. Sensors 2025, 25, 260. [Google Scholar] [CrossRef]
- Palazzo, L.; Suglia, V.; Grieco, S.; Buongiorno, D.; Pagano, G.; Bevilacqua, V. Optimized Deep Learning-Based Pathological Gait Recognition Explored Through Network Analysis of Inertial Data. In 2025 IEEE Medical Measurements & Applications (MeMeA); IEEE: Chania, Greece, 2025; pp. 1–5. [Google Scholar] [CrossRef]
- Çankaya, D.; Aktı, S.; Ünal, Ş.B.; Sezgin, E.A. Unicompartmental knee arthroplasty results in a better gait pattern than total knee arthroplasty: Gait analysis with a smartphone application. Jt. Dis. Relat. Surg. 2021, 32, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Tsakanikas, V.; Ntanis, A.; Rigas, G.; Androutsos, C.; Boucharas, D.; Tachos, N.; Skaramagkas, V.; Chatzaki, C.; Kefalopoulou, Z.; Tsiknakis, M.; et al. Evaluating Gait Impairment in Parkinson’s Disease from Instrumented Insole and IMU Sensor Data. Sensors 2023, 23, 3902. [Google Scholar] [CrossRef] [PubMed]
- Boutaayamou, M.; Pelzer, D.; Schwartz, C.; Gillain, S.; Garraux, G.; Croisier, J.L.; Verly, J.G.; Brüls, O. Toward Convenient and Accurate IMU-Based Gait Analysis. Sensors 2025, 25, 1267. [Google Scholar] [CrossRef]
- Prasanth, H.; Caban, M.; Keller, U.; Courtine, G.; Ijspeert, A.; Vallery, H.; von Zitzewitz, J. Wearable Sensor-Based Real-Time Gait Detection: A Systematic Review. Sensors 2021, 21, 2727. [Google Scholar] [CrossRef]
- Jasiewicz, J.M.; Allum, J.H.; Middleton, J.W.; Barriskill, A.; Condie, P.; Purcell, B.; Li, R.C. Gait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individuals. Gait Posture 2006, 24, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Taborri, J.; Rossi, S.; Palermo, E.; Patanè, F.; Cappa, P. A novel HMM distributed classifier for the detection of gait phases by means of a wearable inertial sensor network. Sensors 2014, 14, 16212–16234. [Google Scholar] [CrossRef]
- Li, F.; Liu, G.; Liu, J.; Chen, X.; Ma, X. 3D Tracking via Shoe Sensing. Sensors 2016, 16, 1809. [Google Scholar] [CrossRef]
- Manna, S.K.; Bin Azhar, M.H.; Azhar, M.A.; Greace, A. Optimal locations and computational frameworks of FSR and IMU sensors for measuring gait abnormalities. Heliyon 2023, 9, e15210. [Google Scholar] [CrossRef]
- Wylde, V.; Blom, A.W.; Bolink, S.; Brunton, L.; Dieppe, P.; Gooberman-Hill, R.; Grimm, B.; Mann, C.; Lenguerrand, E. Assessing function in patients undergoing joint replacement: A study protocol for a cohort study. BMC Musculoskelet. Disord. 2012, 13, 220. [Google Scholar] [CrossRef]
- Hjorth, M.H.; Stilling, M.; Lorenzen, N.D.; Jakobsen, S.S.; Soballe, K.; Mechlenburg, I. Block-step asymmetry 5 years after large-head metal-on-metal total hip arthroplasty is related to lower muscle mass and leg power on the implant side. Clin. Biomech. 2014, 29, 684–690. [Google Scholar] [CrossRef]
- Teramoto, S.; Ohga, E.; Ishii, T.; Yamaguchi, Y.; Yamamoto, H.; Mastsuse, T. Reference value of six-minute walking distance in healthy middle-aged and older subjects. Eur. Respir. J. 2000, 15, 1132–1133. [Google Scholar] [CrossRef]
- Kuś, M.; Wasiuk-Zowada, D.; Henke, M.; Szefler-Derela, J.; Knapik, A. Comparison of Gait in Women with Degenerative Changes of the Hip Joint and Healthy Women Using the MoKA System—A Pilot Study. Sensors 2024, 24, 6417. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Camarri, B.; Eastwood, P.R.; Cecins, N.M.; Thompson, P.J.; Jenkins, S. Six minute walk distance in healthy subjects aged 55-75 years. Respir. Med. 2006, 100, 658–665. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W. Six-Minute Walk Test A Meta-Analysis of Data From Apparently Healthy Elders. Top. Geriatr. Rehabil. 2007, 23, 155–160. [Google Scholar] [CrossRef]
- Beekman, E.; Mesters, I.; Hendriks, E.J.; Klaassen, M.P.; Gosselink, R.; van Schayck, O.C.; de Bie, R.A. Course length of 30 metres versus 10 metres has a significant influence on six-minute walk distance in patients with COPD: An experimental crossover study. J. Physiother. 2013, 59, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Bejek, Z.; Paróczai, R.; Illyés, A.; Kiss, R.M. The influence of walking speed on gait parameters in healthy people and in patients with osteoarthritis. Knee Surg. Sports Traumatol. Arthrosc. 2006, 14, 612–622. [Google Scholar] [CrossRef]
- Millar, S.C.; Bennett, K.; Rickman, M.; Thewlis, D. Retention of kinematic patterns during a 6-minute walk test in people with knee osteoarthritis. Gait Posture 2023, 101, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Schrack, J.A.; Simonsick, E.M.; Ferrucci, L. The energetic pathway to mobility loss: An emerging new framework for longitudinal studies on aging. J. Am. Geriatr. Soc. 2010, 58, 329–336. [Google Scholar] [CrossRef]
- Wert, D.M.; Brach, J.S.; Perera, S.; VanSwearingen, J. The association between energy cost of walking and physical function in older adults. Arch. Gerontol. Geriatr. 2013, 57, 198–203. [Google Scholar] [CrossRef]
- Schrager, M.A.; Schrack, J.A.; Simonsick, E.M.; Ferrucci, L. Association between energy availability and physical activity in older adults. Am. J. Phys. Med. Rehabil. 2014, 93, 876–883. [Google Scholar] [CrossRef]
- Coyle, P.C.; Schrack, J.A.; Hicks, G.E. Pain Energy Model of Mobility Limitation in the Older Adult. Pain. Med. 2018, 19, 1559–1569. [Google Scholar] [CrossRef] [PubMed]
- Kushioka, J.; Sun, R.; Zhang, W.; Muaremi, A.; Leutheuser, H.; Odonkor, C.A.; Smuck, M. Gait Variability to Phenotype Common Orthopedic Gait Impairments Using Wearable Sensors. Sensors 2022, 22, 9301. [Google Scholar] [CrossRef] [PubMed]
- Takakusaki, K. Neurophysiology of gait: From the spinal cord to the frontal lobe. Mov. Disord. 2013, 28, 1483–1491. [Google Scholar] [CrossRef]


| Parameter | Research Group | Control Group | Research–Control: p | ||||
|---|---|---|---|---|---|---|---|
| Dysfunctional Leg | Mean (±95% CI) | Median | Person with Dysfunction Left–Right: p | Mean (±95% CI) | Median | ||
| 6MWT average step length [m] | left | 303 (213–393) | 307 | 360 (330–391) | 371 | ** | |
| right | 291 (259–323) | 294 | |||||
| 6MWT number of steps [n] | left | 499 (370–627) | 528 | 595 (554–636) | 618 | * | |
| right | 524 (467–581) | 531 | |||||
| 6MWT average step length [m] | left | 0.6 (0.4–0.7) | 0.6 | 0.6 (0.5–0.6) | 0.6 | ||
| right | 0.6 (0.5–0.6) | 0.5 | |||||
| Plane | Part of the Body | Mean (SD) | AC | ICC |
|---|---|---|---|---|
| frontal | left leg | −0.12 (3.33) | 0.95 | 0.87 |
| right leg | 0.73 (4.64) | 0.96 | 0.90 | |
| pelvis | 0.02 (1.18) | 0.88 | 0.71 | |
| sagittal | left leg | 7.56 (3,46) | 0.97 | 0.92 |
| right leg | 7.26 (3.38) | 0.97 | 0.90 | |
| pelvis | 21.51 (7.94) | 0.99 | 0.98 | |
| transverse | left leg | −1.62 (9.56) | 0.80 | 0.57 |
| right leg | 1.59 (7.16) | 0.81 | 0.59 | |
| pelvis | 0.01 (0.21) | 0.99 | 0.99 |
| Measurement | Time | Research Group (RG) | Control Group (CG) | RG-CG: | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Part of the Body | Plane | Dysfunction | ||||||||
| Left Leg | Right Leg | p [2] | Cohen’s d | |||||||
| Mean (±95% CI) | p [1] | Mean (±95% CI) | p [1] | Mean (±95% CI) | p [1] | |||||
| left leg | frontal | 1′ | 0.1 (−1.0–1.1) | −0.1 (−2.0–1.8) | −0.4 (−1.1–0.3) | *** | −0.1 | |||
| 3′ | 1.1 (−0.3–2.4) | −1.3 (−4.8–2.2) | 0.1 (−0.8–0.9) | 0.3 | ||||||
| 6′ | 1.3 (−0.4–2.9) | −1.2 (−4.7–2.4) | 0.3 (−0.6–1.2) | −0.3 | ||||||
| right leg | 1′ | 1.7 (−0.1–3.3) | *** | 1.6 (0.0–3.3) | 1.2 (0.4–2.0) | 0.0 | ||||
| 3′ | 0.7 (−1.4–2.8) | 1.2 (−1.6–3.9) | 0.7 (0.5–1.9) | 0.2 | ||||||
| 6′ | 0.5 (−1.6–2.6) | −2.1 (−9.5–5.3) | 0.6 (−0.6–1.9) | 0.2 | ||||||
| left leg | sagittal | 1′ | 5.5 (4.4–6.6) | 2.7 (0.5–5.0) | 8.2 (7.4–9.0) | *** | **** | 0.4 | ||
| 3′ | 6.2 (4.8–6.6) | 2.8 (0.4–5.2) | 8.6 (7.6–9.7) | *** | 0.3 | |||||
| 6′ | 6.1 (4.5–7.7) | 3.1 (0.7–5.5) | 9.0 (8.0–10.1) | **** | 0.9 | |||||
| right leg | 1′ | 5.9 (3.6–8.2) | 3.7 (2.6–4.8) | 7.8 (6.9–8.7) | * | *** | 0.2 | |||
| 3′ | 6.7 (4.6–8.7) | 3.0 (1.2–4.9) | 8.2 (6.9–9.4) | *** | 0.2 | |||||
| 6′ | 6.8 (4.9–8.6) | 3.9 (2.8–5.1) | 8.9 (8.0–9.8) | **** | 0.3 | |||||
| left leg | transverse | 1′ | −1.2 (−3.3–0.9) | 0.7 (−2.4–3.8) | 2.3 (1.1–3.5) | * | 0.9 | |||
| 3′ | −5.7 (−14.8–3.4) | −1.4 (−6.5–3.7) | 1.4 (−0.6–3.4) | 0.5 | ||||||
| 6′ | −3.9 (−19.4–11.7) | −0.0 (−4.9–4.8) | 1.5 (−2.2–5.2) | 0.3 | ||||||
| right leg | 1′ | 0.5 (−3.1–4.0) | −1.6 (−5.0–1.9) | 1.3 (0.2–2.5) | ** | −0.1 | ||||
| 3′ | −4.2 (−15.4–7.1) | −1.1 (−7.8–5.6) | 3.7 (1.0–6.4) | * | 0.5 | |||||
| 6′ | −9.2 (−25.6–7.3) | 0.3 (−11.5–12.2) | 6.1 (2.3–9.9) | * | 1.0 | |||||
| pelvis | frontal | 1′ | 0.5 (−0.6–1.6) | 0.2 (−0.9–1.3) | −0.1 (−0.5–0.3) | −0.6 | ||||
| 3′ | 0.4 (−0.5–1.4) | −0.6 (−2.0–0.7) | −0.1 (−0.6–0.5) | −0.4 | ||||||
| 6′ | 0.9 (0.1–1.8) | −2.2 (−4.9–0.6) | −0.2 (−0.7–0.3) | −0.6 | ||||||
| sagittal | 1′ | 20.4 (15.7–25.1) | 20.1 (14.5–25.6) | 22.2 (20.2–24.1) | 0.1 | |||||
| 3′ | 22.0 (18.5–25.5) | 20.3 (15.0–25.6) | 22.1 (20.1–24.0) | −0.1 | ||||||
| 6′ | 22.2 (18.5–25.8) | 20.7 (15.5–26.0) | 22.5 (20.5–24.4) | 0.0 | ||||||
| tranverse | 1′ | −0.1 (−0.2–−0.1) | −0.1 (−0.3–0.2) | 0.1 (−0.0–0.1) | 0.7 | |||||
| 3′ | −0.0 (−0.1–0.1) | −0.1 (−0.5–0.4) | 0.0 (−0.1–0.1) | 0.1 | ||||||
| 6′ | −0.0 (−0.2–0.1) | 0.3 (0.0–0.6) | 0.0 (−0.1–0.1) | 0.2 | ||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kuś, M.; Wasiuk-Zowada, D.; Herman, K.; Cholewiński, J.; Knapik, A. Gait Parameters of Women Before Knee Joint Arthritis—Analysis Using the MoKA System. Sensors 2026, 26, 136. https://doi.org/10.3390/s26010136
Kuś M, Wasiuk-Zowada D, Herman K, Cholewiński J, Knapik A. Gait Parameters of Women Before Knee Joint Arthritis—Analysis Using the MoKA System. Sensors. 2026; 26(1):136. https://doi.org/10.3390/s26010136
Chicago/Turabian StyleKuś, Maciej, Dagmara Wasiuk-Zowada, Katarzyna Herman, Jerzy Cholewiński, and Andrzej Knapik. 2026. "Gait Parameters of Women Before Knee Joint Arthritis—Analysis Using the MoKA System" Sensors 26, no. 1: 136. https://doi.org/10.3390/s26010136
APA StyleKuś, M., Wasiuk-Zowada, D., Herman, K., Cholewiński, J., & Knapik, A. (2026). Gait Parameters of Women Before Knee Joint Arthritis—Analysis Using the MoKA System. Sensors, 26(1), 136. https://doi.org/10.3390/s26010136

