Dual Minimization of Spectrum Overlap for High-Sensitivity, High-Temperature Sensing
Highlights
- Dually minimizing spectral overlap of both energy transfer and emission enables high-sensitivity ratiometric thermosensing.
- Enlarging the emission separation between dual emitters proves more decisive for enhancing sensitivity than suppressing FRET or enhancing thermal decay contrast.
- Providing new insights for understanding underlying mechanism in high-sensitivity thermometry.
- Providing a new design strategy for fabrication high-performance thermometers.
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Photophysical Properties
3.2. Factors for Designing High-Performance Film Thermometers
3.2.1. Discrepancy in Thermal Decay of Fluorescence
3.2.2. Frustration of Energy Transfer
3.2.3. Separation of Ratiometric Emissions
3.3. Ratiometric Thermosensing Performance of the Hybrid Films
3.4. Analysis of Determinant Factors for Themosensing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, N.; Wang, J.W.; Xiao, Z.; Tan, R.M.; Zhang, Y.; Xu, S.Q.; Bai, G.X. Stimuli-Responsive Lanthanide Activated Piezoelectric LiNbO3 Microcrystals for Multimode Luminescence and Optical Sensing Applications. Laser Photonics Rev. 2024, 18, 8. [Google Scholar] [CrossRef]
- Qiu, X.C.; Zhou, Q.W.; Zhu, X.J.; Wu, Z.G.; Feng, W.; Li, F.Y. Ratiometric upconversion nanothermometry with dual emission at the same wavelength decoded via a time-resolved technique. Nat. Commun. 2020, 11, 9. [Google Scholar] [CrossRef]
- Li, F.; Lin, X.Z.; Xue, H.; Wang, J.; Li, J.; Fei, T.; Liu, S.; Zhou, T.T.; Zhao, H.R.; Zhang, T. Ultrasensitive Flexible Temperature Sensors Based on Thermal-Mediated Ions Migration Dynamics in Asymmetrical Polymer Bilayers. ACS Nano 2024, 18, 7521–7531. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.F.; Abidian, M.R.; Ahn, J.H.; Akinwande, D.; Andrews, A.M.; Antonietti, M.; Bao, Z.N.; Berggren, M.; Berkey, C.A.; Bettinger, C.J.; et al. Technology roadmap for flexible sensors. ACS Nano 2023, 17, 5211–5295. [Google Scholar] [CrossRef]
- Zhou, J.J.; del Rosal, B.; Jaque, D.; Uchiyama, S.; Jin, D.Y. Advances and challenges for fluorescence nanothermometry. Nat. Methods 2020, 17, 967–980. [Google Scholar] [CrossRef]
- Wan, C.; Chen, G.; Fu, Y.; Wang, M.; Matsuhisa, N.; Pan, S.; Pan, L.; Yang, H.; Wan, Q.; Zhu, L. An artificial sensory neuron with tactile perceptual learning. Adv. Mater. 2018, 30, 1801291. [Google Scholar] [CrossRef] [PubMed]
- Beheim, G. Optical Temperature Sensors. In Integrated Optics, Microstructures, and Sensors; Springer: Berlin/Heidelberg, Germany, 1995; pp. 285–313. [Google Scholar]
- Ximendes, E.; Marin, R.; Shen, Y.L.; Ruiz, D.; Gómez-Cerezo, D.; Rodríguez-Sevilla, P.; Lifante, J.; Viveros-Méndez, P.X.; Gámez, F.; García-Soriano, D.; et al. Infrared-Emitting Multimodal Nanostructures for Controlled In Vivo Magnetic Hyperthermia. Adv. Mater. 2021, 33, 9. [Google Scholar] [CrossRef]
- Cerón, E.N.; Ortgies, D.H.; del Rosal, B.; Ren, F.; Benayas, A.; Vetrone, F.; Ma, D.; Sanz-Rodríguez, F.; Solé, J.G.; Jaque, D.; et al. Hybrid Nanostructures for High-Sensitivity Luminescence Nanothermometry in the Second Biological Window. Adv. Mater. 2015, 27, 4781–4787. [Google Scholar] [CrossRef]
- Dong, B.; Cao, B.S.; He, Y.Y.; Liu, Z.; Li, Z.P.; Feng, Z.Q. Temperature Sensing and In Vivo Imaging by Molybdenum Sensitized Visible Upconversion Luminescence of Rare-Earth Oxides. Adv. Mater. 2012, 24, 1987–1993. [Google Scholar] [CrossRef]
- Zhan, Y.Y.; Kojima, T.; Ishii, K.; Takahashi, S.; Haketa, Y.; Maeda, H.; Uchiyama, S.; Hiraoka, S. Temperature-controlled repeatable scrambling and induced-sorting of building blocks between cubic assemblies. Nat. Commun. 2019, 10, 8. [Google Scholar] [CrossRef]
- Brites, C.D.S.; Marin, R.; Suta, M.; Neto, A.C.N.; Ximendes, E.; Jaque, D.; Carlos, L.D. Spotlight on luminescence thermometry: Basics, challenges, and cutting-edge applications. Adv. Mater. 2023, 35, 45. [Google Scholar] [CrossRef] [PubMed]
- Inada, N.; Fukuda, N.; Hayashi, T.; Uchiyama, S. Temperature imaging using a cationic linear fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat. Protoc. 2019, 14, 1293–1321. [Google Scholar] [CrossRef]
- Han, D.B.; Imran, M.; Zhang, M.J.; Chang, S.; Wu, X.G.; Zhang, X.; Tang, J.L.; Wang, M.S.; Ali, S.; Li, X.G.; et al. Efficient light-emitting diodes based on in situ fabricated FAPbBr3 nanocrystals: The enhancing role of the ligand-assisted reprecipitation process. ACS Nano 2018, 12, 8808–8816. [Google Scholar] [CrossRef] [PubMed]
- Xue, K.; Wang, C.; Wang, J.; Lv, S.; Hao, B.; Zhu, C.; Tang, B.Z. A sensitive and reliable organic fluorescent nanothermometer for noninvasive temperature sensing. J. Am. Chem. Soc. 2021, 143, 14147–14157. [Google Scholar] [CrossRef] [PubMed]
- Di, Q.; Li, L.; Miao, X.; Lan, L.; Yu, X.; Liu, B.; Yi, Y.; Naumov, P.; Zhang, H. Fluorescence-based thermal sensing with elastic organic crystals. Nat. Commun. 2022, 13, 5280. [Google Scholar] [CrossRef]
- Kim, B.-H.; Kim, W.; Kim, T.; Ko, B.M.; Hong, S.-J.; Lee, K.; Kim, J.; Song, S.-H.; Lee, S. Hydrogen-bonding-mediated molecular vibrational suppression for enhancing the fluorescence quantum yield applicable for visual phenol detection. ACS Appl. Mater. Interfaces 2021, 13, 54339–54347. [Google Scholar] [CrossRef]
- Sun, Z.B.; Liu, J.K.; Yuan, D.F.; Zhao, Z.H.; Zhu, X.Z.; Liu, D.H.; Peng, Q.; Zhao, C.H. 2,2-Diamino-6,6′-diboryl-1,1′-binaphthyl: A versatile building block for temperature-dependent dual fluorescence and switchable circularly polarized luminescence. Angew. Chem. Int. Ed. 2019, 58, 4840–4846. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, Z.; Wu, L.; Lu, S.; Ling, S.; Li, G.; Xu, L.; Ma, L.; Hou, Y.; Wang, X. Emissive platinum (II) cages with reverse fluorescence resonance energy transfer for multiple sensing. J. Am. Chem. Soc. 2020, 142, 2592–2600. [Google Scholar] [CrossRef]
- Suo, H.; Zhao, X.; Zhang, Z.; Wang, Y.; Sun, J.; Jin, M.; Guo, C. Rational design of ratiometric luminescence thermometry based on thermally coupled levels for bioapplications. Laser Photonics Rev. 2021, 15, 2000319. [Google Scholar] [CrossRef]
- Liu, X.; Liu, J.; Zhou, H.; Yan, M.L.; Liu, C.J.; Guo, X.D.; Xie, J.; Li, S.Y.; Yang, G.Q. Ratiometric dual fluorescence tridurylboron thermometers with tunable measurement ranges and colors. Talanta 2020, 210, 7. [Google Scholar] [CrossRef]
- Wang, J.X.; Peng, L.Y.; Liu, Z.F.; Zhu, X.; Niu, L.Y.; Cui, G.L.; Yang, Q.Z. Tunable fluorescence and afterglow in organic crystals for temperature sensing. J. Phys. Chem. Lett. 2022, 13, 1985–1990. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.T.; Meana, Y.; Mazza, M.M.A.; Baker, J.D.; Minnett, P.J.; Raymo, F.M. Fluorescence Switching for Temperature Sensing in Water. J. Am. Chem. Soc. 2022, 144, 4759–4763. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Song, R.; Yu, J.; Liu, M.; Wang, Z.; Wu, C.; Yang, Y.; Wang, Z.; Chen, B.; Qian, G. Dual-emitting MOF⊃ dye composite for ratiometric temperature sensing. Adv. Mater. 2015, 27, 1420–1425. [Google Scholar] [CrossRef]
- Pietsch, C.; Vollrath, A.; Hoogenboom, R.; Schubert, U.S. A Fluorescent Thermometer Based on a Pyrene-Labeled Thermoresponsive Polymer. Sensors 2010, 10, 7979–7990. [Google Scholar] [CrossRef]
- Brites, C.D.S.; Lima, P.P.; Silva, N.J.O.; Millán, A.; Amaral, V.S.; Palacio, F.; Carlos, L.D. A Luminescent Molecular Thermometer for Long-Term Absolute Temperature Measurements at the Nanoscale. Adv. Mater. 2010, 22, 4499–4504. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.J.; Zhang, J.P.; Wu, Z.Y.; Lei, H.; Zhao, Y.F.; Qi, W.Q.; Gao, X.; Jiang, F.L.; Liu, Y.S.; Chen, L.; et al. A Sensitive Ratiometric Thermometer Constructed by AIEgen-Based Mixed Lanthanide MOF for Intracellular Temperature Mapping. Adv. Sci. 2025, 9, e10147. [Google Scholar] [CrossRef]
- Xue, Y.; Qiang, K.R.; Zhao, F.Y.; Yang, H.Y.; Mao, Q.N.; Ding, Y.; Liu, M.J.; Zhong, J.S. Multiple Linear Regression-Enhanced Optical Thermometry via Phonon-Assisted Back Energy Transfer in Tm3+-Eu3+ Co-Doped Phosphors. Adv. Opt. Mater. 2025, 13, 10. [Google Scholar] [CrossRef]
- Si, C.F.; Wang, T.; Xu, Y.; Lin, D.Q.; Sun, D.M.; Zysman-Colman, E. A temperature sensor with a wide spectral range based on a dual-emissive TADF dendrimer system. Nat. Commun. 2024, 15, 11. [Google Scholar] [CrossRef] [PubMed]
- Acharya, N.; Upadhyay, M.; Deka, R.; Ray, D. Effect of Thermally Reversible Conformers on Delayed Fluorescence and Temperature Sensing. J. Phys. Chem. C 2024, 128, 8750–8758. [Google Scholar] [CrossRef]
- Troyano, J.; Castillo, O.; Martínez, J.I.; Fernández-Moreira, V.; Ballesteros, Y.; Maspoch, D.; Zamora, F.; Delgado, S. Reversible Thermochromic Polymeric Thin Films Made of Ultrathin 2D Crystals of Coordination Polymers Based on Copper(I)-Thiophenolates. Adv. Funct. Mater. 2018, 28, 11. [Google Scholar] [CrossRef]
- Feng, J.F.; Gao, S.Y.; Liu, T.F.; Shi, J.L.; Cao, R. Preparation of Dual-Emitting Ln@UiO-66-Hybrid Films via Electrophoretic Deposition for Ratiometric Temperature Sensing. ACS Appl. Mater. Interfaces 2018, 10, 6014–6023. [Google Scholar] [CrossRef]
- Feng, J.; Xiong, L.; Wang, S.Q.; Li, S.Y.; Li, Y.; Yang, G.Q. Fluorescent Temperature Sensing Using Triarylboron Compounds and Microcapsules for Detection of a Wide Temperature Range on the Micro- and Macroscale. Adv. Funct. Mater. 2013, 23, 340–345. [Google Scholar] [CrossRef]
- Fang, Q.Y.; Li, Y.; Wang, Y.N.; Yao, F.; Wang, S.Q.; Qian, Y.; Yang, G.Q.; Huang, W. Feasible organic films using noninterfering emitters for sensitive and spatial high-temperature sensing. J. Mater. Chem. C 2018, 6, 8115–8121. [Google Scholar] [CrossRef]
- Qian, X.; Kong, M.; Song, L.; Yue, G.; Zhang, Y.; Qian, Y.; Fan, Q. Heat resistant organic dyes for high temperature luminescent temperature sensing. Adv. Sens. Res. 2024, 3, 2300143. [Google Scholar] [CrossRef]
- Liu, S.H.; Wang, K.; Ke, S.; Chen, M.L.; Qian, X.S.; Qin, X.Y.; Yin, L.L.; Fan, Q.L.; Qian, Y. Organic high-temperature sensing films based on ESIPT material. Sens. Actuators A Phys. 2024, 377, 7. [Google Scholar] [CrossRef]
- Qin, X.Y.; Yang, N.J.; Yao, F.; Chen, H.; Wang, J.; Kong, M.F.; Qian, Y.; Fan, Q.L. Concentration-induced phase separation to suppress energy transfer for high-temperature ratiometric sensing in organic films. Adv. Opt. Mater. 2022, 10, 11. [Google Scholar] [CrossRef]
- Kong, M.F.; Zhan, Y.H.; Yang, T.; Wang, S.Q.; Guo, X.D.; Hu, R.; Qian, Y.; Fan, Q.L.; Yang, G.Q. Single-sample ratiometric organic films for naked-eye high-temperature multi-threshold indication. Adv. Opt. Mater. 2022, 10, 8. [Google Scholar] [CrossRef]
- Jiang, X.C.; Dong, Z.Y.; Miao, X.D.; Wang, K.; Yao, F.; Gao, Z.Q.; Mi, B.X.; Yi, Y.P.; Yang, G.Q.; Qian, Y. Fabrication of flexible high-temperature film thermometers and heat-resistant OLEDs using novel hot exciton organic fluorophores. Adv. Funct. Mater. 2022, 32, 12. [Google Scholar] [CrossRef]
- Yao, F.; Kong, M.F.; Yan, B.H.; Li, Y.; Guo, Q.Y.; Li, J.W.; Wang, S.Q.; Guo, X.D.; Hu, R.; Qian, Y.; et al. Visualized real-time and spatial high-temperature sensing in air-stable organic films. Adv. Mater. Technol. 2020, 5, 11. [Google Scholar] [CrossRef]
- Zhang, W.B.; Wang, J.W.; Wang, L.; Wan, J.; Bai, G.X.; Xu, S.Q.; Chen, L. High-Sensitivity Ratiometric Temperature Sensing and Information Encryption Based on Upconversion Emissions from Lanthanide Ions Doped BaTiO3 Phosphor. Adv. Opt. Mater. 2025, 13, 10. [Google Scholar] [CrossRef]
- Antic, Z.; Dramicanin, M.D.; Prashanthi, K.; Jovanovic, D.; Kuzman, S.; Thundat, T. Pulsed Laser Deposited Dysprosium-Doped Gadolinium-Vanadate Thin Films for Noncontact, Self-Referencing Luminescence Thermometry. Adv. Mater. 2016, 28, 7745. [Google Scholar] [CrossRef] [PubMed]
- Getz, M.N.; Nilsen, O.; Hansen, P.A. Sensors for optical thermometry based on luminescence from layered YVO4: Ln3+ (Ln = Nd, Sm, Eu, Dy, Ho, Er, Tm, Yb) thin films made by atomic layer deposition. Sci. Rep. 2019, 9, 11. [Google Scholar] [CrossRef] [PubMed]









| Ratio | τ1/ns | τ2/ns | <τ> 1/ns | ꭓ2 |
|---|---|---|---|---|
| 10% | 2.00 (54.60%) | 3.63 (45.40%) | 2.74 | 1.220 |
| 20% | 1.68 (50.25%) | 3.32 (49.75%) | 2.50 | 1.269 |
| 40% | 1.28 (48.19%) | 2.85 (51.81%) | 2.09 | 1.232 |
| 50% | 1.19 (47.15%) | 2.78 (52.85%) | 2.03 | 1.287 |
| Ratio | τ1/ns | τ2/ns | <τ> 1/ns | ꭓ2 |
|---|---|---|---|---|
| 6% | 0.72 (63.62%) | 2.76 (36.38%) | 1.46 | 1.311 |
| 10% | 0.75 (67.18%) | 2.87 (32.82%) | 1.45 | 1.255 |
| 20% | 0.71 (70.58%) | 2.78 (29.42%) | 1.32 | 1.212 |
| 30% | 0.66 (73.33%) | 2.74 (26.67%) | 1.22 | 1.347 |
| Material | Eye- Detectable | Maximum Sr | Temperature Range with Sr > 0.5% °C−1 | Temperature range with Sr > 1% °C−1 | Recyclability | Film Thermal Sensor | Fabrication Method | Ref. |
|---|---|---|---|---|---|---|---|---|
| DBA-BPAc: Ir(MDQ)2(acac) | Yes | 3.36% °C−1 (at 166 °C) | 50–105 °C, 116–262 °C | 54–92 °C, 126–245 °C | √ (20–200 °C) | √ | drop-casting | This work |
| Z-DBABH: Ir(MDQ)2(acac) | Yes | 1.92% °C−1 (at 300 °C) | 103–220 °C, 261–300 °C | 127–183 °C, 278–300 °C | √ (20–200 °C) | √ | drop-casting | This work |
| S1/C2 | Yes | 2.49% °C−1 (at 220 °C) | 40–300 °C | 120–300 °C | √ | √ | drop-casting | Ref. [36] |
| P1/CzLA | Yes | 1.12% °C−1 (at 156 °C) | 102–236 °C | 133–180 °C | √ | √ | drop-casting | Ref. [37] |
| C3/T4AC | Yes | 1.27% °C−1 (at 128 °C) | 90–189 °C | − 1 | √ | √ | drop-casting | Ref. [35] |
| P1/T4AC | Yes | 2.14% °C−1 (at 168 °C) | 23–247 °C | 50–225 °C | √ | √ | drop-casting | Ref. [40] |
| C2/HBTPy | Yes | 6.32% °C−1 (at 167 °C) | 52−170 °C | 90–170 °C | √ | √ | drop-casting | Ref. [34] |
| BaTiO3: Yb3+: Tm3+: Er3+ | − 1 | 2.70% °C−1 (at 30 °C) | 30−120 °C 130–270 °C | 30−120 °C 130–270 °C | − 1 | × | − 1 | Ref. [41] |
| Dy3+-doped GdVO4 | − 1 | 2% °C−1 (at 27 °C) | 27–200 °C | 27–157 °C | √ | √ | pulsed laser deposition | Ref. [42] |
| YVO4: Eu3+: Dy3+ | Yes | 3.6% °C−1 (at 367 °C) | 277–427 °C | 277–427 °C | − 1 | √ | pulsed laser deposition | Ref. [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Xu, X.; Shen, K.; Zhang, X.; Liu, Y.; Qian, Y.; Fan, Q. Dual Minimization of Spectrum Overlap for High-Sensitivity, High-Temperature Sensing. Sensors 2026, 26, 126. https://doi.org/10.3390/s26010126
Xu X, Shen K, Zhang X, Liu Y, Qian Y, Fan Q. Dual Minimization of Spectrum Overlap for High-Sensitivity, High-Temperature Sensing. Sensors. 2026; 26(1):126. https://doi.org/10.3390/s26010126
Chicago/Turabian StyleXu, Xiaoheng, Ke Shen, Xuankang Zhang, Yujian Liu, Yan Qian, and Quli Fan. 2026. "Dual Minimization of Spectrum Overlap for High-Sensitivity, High-Temperature Sensing" Sensors 26, no. 1: 126. https://doi.org/10.3390/s26010126
APA StyleXu, X., Shen, K., Zhang, X., Liu, Y., Qian, Y., & Fan, Q. (2026). Dual Minimization of Spectrum Overlap for High-Sensitivity, High-Temperature Sensing. Sensors, 26(1), 126. https://doi.org/10.3390/s26010126

