Pt/Ru-Modified ZnO Sensor Grown In Situ for Detection of ppb H2S
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Sensing Materials
2.2. Synthesis of ZnO-Pt/Ru Nanorod
2.3. Characterization of Sensing Materials
2.4. Gas-Sensing Testing Environment
3. Results and Discussion
3.1. Characterization of Material
3.2. Gas-Sensing Performance
3.3. Gas-Sensing Mechanism
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ali, F.I.M.; Awwad, F.; Greish, Y.E.; Mahmoud, S.T. Hydrogen Sulfide (H2S) Gas Sensor: A Review. IEEE Sens. J. 2019, 19, 2394–2407. [Google Scholar] [CrossRef]
- Pandey, S.K.; Kim, K.-H.; Tang, K.-T. A review of sensor-based methods for monitoring hydrogen sulfide. Trac-Trends Anal. Chem. 2012, 32, 87–99. [Google Scholar] [CrossRef]
- Li, W.; Shahbazi, M.; Xing, K.; Tesfamichael, T.; Motta, N.; Qi, D.-C. Highly Sensitive NO2 Gas Sensors Based on MoS2@MoO3 Magnetic Heterostructure. Nanomaterials 2022, 12, 1303. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.H.; Krokowski, D.; Guan, B.J.; Bederman, I.; Majumder, M.; Parisien, M.; Diatchenko, L.; Kabil, O.; Willard, B.; Banerjee, R.; et al. Quantitative H2S-mediated protein sulfhydration reveals metabolic reprogramming during the integrated stress response. eLife 2015, 4, e10067. [Google Scholar] [CrossRef]
- Hsueh, T.-J.; Wu, S.-S. Highly sensitive Co3O4 nanoparticles/MEMS NO2 gas sensor with the adsorption of the Au nanoparticles. Sens. Actuators B Chem. 2021, 329, 129201. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Zhu, X.; Li, Y.; Cai, W. Bilayer Au nanoparticle-decorated WO3 porous thin films: On-chip fabrication and enhanced NO2 gas sensing performances with high selectivity. Sens. Actuators B Chem. 2019, 280, 192–200. [Google Scholar] [CrossRef]
- Shewale, P.S.; Patil, V.B.; Shin, S.W.; Kim, J.H.; Uplane, M.D. H2S gas sensing properties of nanocrystalline Cu-doped ZnO thin films prepared by advanced spray pyrolysis. Sens. Actuators B Chem. 2013, 186, 226–234. [Google Scholar] [CrossRef]
- Xuan, J.-Y.; Zhao, G.-D.; Shi, X.-B.; Geng, W.; Li, H.-Z.; Sun, M.-L.; Jia, F.-C.; Tan, S.-G.; Yin, G.-C.; Liu, B. In-situ fabrication of ZnO nanoparticles sensors based on gas-sensing electrode for ppb-level H2S detection at room temperature. Chin. Phys. B 2021, 30, 020701. [Google Scholar] [CrossRef]
- Datta, N.; Ramgir, N.; Kaur, M.; Ganapathi, S.K.; Debnath, A.K.; Aswal, D.K.; Gupta, S.K. Selective H2S sensing characteristics of hydrothermally grown ZnO-nanowires network tailored by ultrathin CuO layers. Sens. Actuators B Chem. 2012, 166, 394–401. [Google Scholar] [CrossRef]
- Fan, C.; Sun, F.; Wang, X.; Huang, Z.; Keshvardoostchokami, M.; Kumar, P.; Liu, B. Synthesis of ZnO Hierarchical Structures and Their Gas Sensing Properties. Nanomaterials 2019, 9, 1277. [Google Scholar] [CrossRef]
- Wu, X.; Xiong, S.; Gong, Y.; Gong, Y.; Wu, W.; Mao, Z.; Liu, Q.; Hu, S.; Long, X. MOF-SMO hybrids as a H2S sensor with superior sensitivity and selectivity. Sens. Actuators B Chem. 2019, 292, 32–39. [Google Scholar] [CrossRef]
- Kruefu, V.; Wisitsoraat, A.; Tuantranont, A.; Phanichphant, S. Ultra-sensitive H2S sensors based on hydrothermal/impregnation-made Ru-functionalized WO3 nanorods. Sens. Actuators B Chem. 2015, 215, 630–636. [Google Scholar] [CrossRef]
- Yu, A.; Li, Z.; Yi, J. Selective detection of parts-per-billion H2S with Pt-decorated ZnO nanorods. Sens. Actuators B Chem. 2021, 333, 129545. [Google Scholar] [CrossRef]
- Su, Y.; Chen, P.; Wang, P.; Ge, J.; Hu, S.; Zhao, Y.; Xie, G.; Liang, W.; Song, P. Pd-loaded SnO2 hierarchical nanospheres for a high dynamic range H2S micro sensor. RSC Adv. 2019, 9, 5987–5994. [Google Scholar] [CrossRef]
- Choi, S.-W.; Katoch, A.; Sun, G.-J.; Kim, S.S. Bimetallic Pd/Pt nanoparticle-functionalized SnO2 nanowires for fast response and recovery to NO2. Sens. Actuators B Chem. 2013, 181, 446–453. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, Y.; Sun, B.; He, J.; Kang, S.; Hua, Z.-Q.; Tian, C. Surface modification of WO3 nanoparticles with Pt and Ru for VOCs sensors. Chin. J. Anal. Chem. 2022, 50, 100143. [Google Scholar] [CrossRef]
- Chen, X.; Shen, Y.; Zhou, P.; Zhong, X.; Li, G.; Han, C.; Wei, D.; Li, S. Bimetallic Au/Pd nanoparticles decorated ZnO nanowires for NO2 detection. Sens. Actuators B Chem. 2019, 289, 160–168. [Google Scholar] [CrossRef]
- Jiang, K.; Chen, T.; Sun, J.; Quan, H.; Zhou, T. Pd/Pt-Bimetallic-Nanoparticle-Doped In2O3 Hollow Microspheres for Rapid and Sensitive H2S Sensing at Low Temperature. Nanomaterials 2023, 13, 668. [Google Scholar] [CrossRef]
- Duan, X.; Xu, D.; Jia, W.; Sun, B.; Li, R.; Yan, R.; Zhao, W. Pt and black phosphorus co-modified flower-like WS2 composites for fast NO2 gas detection at low temperature. Nanoscale 2024, 16, 2478–2489. [Google Scholar] [CrossRef]
- Zhu, Z.; Huang, S.-H.; Liu, C.-X.; Wu, R.-J. Fabrication of Pd-Pt/ZnO for High Sensitive Gaseous Formaldehyde Sensor. J. Nanosci. Nanotechnol. 2018, 18, 1682–1687. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, L.; Fan, J.; Zhu, B.; Yu, J. Triethylamine gas sensor based on Pt-functionalized hierarchical ZnO microspheres. Sens. Actuators B Chem. 2021, 331, 129425. [Google Scholar] [CrossRef]
- Kruefu, V.; Inpan, U.; Leangtanom, P.; Arkarvipath, C.; Kongpark, P.; Phokharatkul, D.; Wisitsoraat, A.; Tuantranont, A.; Phanichphant, S. Enhanced Gas-Sensing Performances of Ru-Loaded p-Type Co3O4 Nanoparticles. Phys. Status Solidi A-Appl. Mater. Sci. 2018, 215, 1701015. [Google Scholar] [CrossRef]
- Xu, J.; Han, J.; Zhang, Y.; Sun, Y.A.; Xie, B. Studies on alcohol sensing mechanism of ZnO based gas sensors. Sens. Actuators B Chem. 2008, 132, 334–339. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, C.; Qu, F.; Liu, S.; Lin, C.-T.; Du, S.; Chen, Y.; Meng, F.; Yang, M. ZnO nanoflowers modified with RuO2 for enhancing acetone sensing performance. Nanotechnology 2020, 31, 115502. [Google Scholar] [CrossRef]
- Yang, M.; Lu, J.; Wang, X.; Zhang, H.; Chen, F.; Sun, J.; Yang, J.; Sun, Y.; Lu, G. Acetone sensors with high stability to humidity changes based on Ru-doped NiO flower-like microspheres. Sens. Actuators B Chem. 2020, 313, 127965. [Google Scholar] [CrossRef]
- Patil, V.L.; Vanalakar, S.A.; Tarwal, N.L.; Patil, A.P.; Dongale, T.D.; Kim, J.H.; Patil, P.S. Construction of Cu doped ZnO nanorods by chemical method for Low temperature detection of NO2 gas. Sens. Actuators A Phys. 2019, 299, 111611. [Google Scholar] [CrossRef]
- Kim, B.-Y.; Cho, J.S.; Yoon, J.-W.; Na, C.W.; Lee, C.-S.; Ahn, J.H.; Kang, Y.C.; Lee, J.-H. Extremely sensitive ethanol sensor using Pt-doped SnO2 hollow nanospheres prepared by Kirkendall diffusion. Sens. Actuators B Chem. 2016, 234, 353–360. [Google Scholar] [CrossRef]
- Guo, L.; Xie, N.; Wang, C.; Kou, X.; Ding, M.; Zhang, H.; Sun, Y.; Song, H.; Wang, Y.; Lu, G. Enhanced hydrogen sulfide sensing properties of Pt-functionalized α-Fe2O3 nanowires prepared by one-step electrospinning. Sens. Actuators B Chem. 2018, 255, 1015–1023. [Google Scholar] [CrossRef]
- Hu, K.; Li, Y.; Ge, C.; Bai, L.; Liu, G.; Qiao, G.; Kang, S.G.; Kim, E.J.; Wang, M. Room-temperature ppb-level NO2 sensitivity of three-dimensional ordered macroporous Au-loaded SnO2 under intermittent UV light irradiation. Sens. Actuators B Chem. 2023, 387, 133786. [Google Scholar] [CrossRef]
- Wang, M.; Luo, Q.; Hussain, S.; Liu, G.; Qiao, G.; Kini, E.J. Sharply-precipitated spherical assembly of ZnO nanosheets for low temperature H2S gas sensing performances. Mater. Sci. Semicond. Process. 2019, 100, 283–289. [Google Scholar] [CrossRef]
- Nimbalkar, A.R.; Patil, M.G. Synthesis of ZnO thin film by sol-gel spin coating technique for H2S gas sensing application. Phys. B-Condens. Matter 2017, 527, 7–15. [Google Scholar] [CrossRef]
- Nadargi, D.Y.; Tamboli, M.S.; Patil, S.S.; Dateer, R.B.; Mulla, I.S.; Choi, H.; Suryavanshi, S.S. Microwave-Epoxide-Assisted Hydrothermal Synthesis of the CuO/ZnO Heterojunction: A Highly Versatile Route to Develop H2S Gas Sensors. Acs Omega 2020, 5, 8587–8595. [Google Scholar] [CrossRef] [PubMed]
- Balasubramani, V.; Sureshkumar, S.; Rao, T.S.; Sridhar, T.M. Impedance Spectroscopy-Based Reduced Graphene Oxide-Incorporated ZnO Composite Sensor for H2S Investigations. Acs Omega 2019, 4, 9976–9982. [Google Scholar] [CrossRef]
- Kolhe, P.S.; Shinde, A.B.; Kulkarni, S.G.; Maiti, N.; Koinkar, P.M.; Sonawane, K.M. Gas sensing performance of Al doped ZnO thin film for H2S detection. J. Alloys Compd. 2018, 748, 6–11. [Google Scholar] [CrossRef]
- Motaung, D.E.; Mhlongo, G.H.; Bolokang, A.S.; Dhonge, B.P.; Swart, H.C.; Ray, S.S. Improved sensitivity and selectivity of pristine zinc oxide nanostructures to H2S gas: Detailed study on the synthesis reaction time. Appl. Surf. Sci. 2016, 386, 210–223. [Google Scholar] [CrossRef]
- Wang, D.; Chu, X.; Gong, M. Hydrothermal growth of ZnO nanoscrewdrivers and their gas sensing properties. Nanotechnology 2007, 18, 185601. [Google Scholar] [CrossRef]
- Wendel, P.; Periyannan, S.; Jaegermann, W.; Klein, A. Polarization dependence of ZnO Schottky barriers revealed by photoelectron spectroscopy. Phys. Rev. Mater. 2020, 4, 084604. [Google Scholar] [CrossRef]
- Jang, J.-S.; Choi, S.-J.; Kim, S.-J.; Hakim, M.; Kim, I.-D. Rational Design of Highly Porous SnO2 Nanotubes Functionalized with Biomimetic Nanocatalysts for Direct Observation of Simulated Diabetes. Adv. Funct. Mater. 2016, 26, 4740–4748. [Google Scholar] [CrossRef]
- Zhang, S.; Yange, M.; Liang, K.; Turak, A.; Zhang, B.; Meng, D.; Wang, C.; Qu, F.; Cheng, W.; Yang, M. An acetone gas sensor based on nanosized Pt-loaded Fe2O3 nanocubes. Sens. Actuators B Chem. 2019, 290, 59–67. [Google Scholar] [CrossRef]
Materials | Temp (°C) | Concentration (ppm) | Response | Detection Limit (ppm) | Response/Recovery Time (s) | Reference |
---|---|---|---|---|---|---|
ZnO (nanosheet) | 70 | 100 | 23 a | NA | 252/3697 | [30] |
ZnO (film) | 300 | 100 | 3.2 a | 5/NA | 10/198 | [31] |
CuO/ZnO | 250 | 25 | 1.9 a | NA | 23/NA | [32] |
ZIF-8/ZnO | RT | 10 | 2.08 a | 0.05/10 | >600/>900 | [11] |
ZnO/rGO | 90 | 2 | 1.10 a | 2/100 | 8/32 | [33] |
ZnO-Al | 200 | 600 | 12.5 a | NA | 90/209 | [34] |
TGS2602 | NA | 1 | ~1.88 a | 0.1/3 | <25/~20 | FIGARO |
ZnO-Pt/Ru | 198 | 15 | 7.9 b | 0.05/NA | 30/190 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Shi, Y.; Tang, B.; Zheng, C. Pt/Ru-Modified ZnO Sensor Grown In Situ for Detection of ppb H2S. Sensors 2025, 25, 1995. https://doi.org/10.3390/s25071995
Zhang J, Shi Y, Tang B, Zheng C. Pt/Ru-Modified ZnO Sensor Grown In Situ for Detection of ppb H2S. Sensors. 2025; 25(7):1995. https://doi.org/10.3390/s25071995
Chicago/Turabian StyleZhang, Jianhua, Yunbo Shi, Bolun Tang, and Canda Zheng. 2025. "Pt/Ru-Modified ZnO Sensor Grown In Situ for Detection of ppb H2S" Sensors 25, no. 7: 1995. https://doi.org/10.3390/s25071995
APA StyleZhang, J., Shi, Y., Tang, B., & Zheng, C. (2025). Pt/Ru-Modified ZnO Sensor Grown In Situ for Detection of ppb H2S. Sensors, 25(7), 1995. https://doi.org/10.3390/s25071995