Artificial Intelligence and Machine Learning in Sensing and Image Processing
1. Introduction
2. Overview of Contributions
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Contributions
- Li, H.L.; Zhang, X.Q.; Wang, Z.H.; Lu, Z.M.; Cui, J.L. Resampling-Detection-Network-Based Robust Image Watermarking against Scaling and Cutting. Sensors 2023, 23, 8195.
- Najafi, M.; Yousefi Rezaii, T.; Danishvar, S.; Razavi, S.N. Qualitative Classification of Proximal Femoral Bone Using Geometric Features and Texture Analysis in Collected MRI Images for Bone Density Evaluation. Sensors 2023, 23, 7612.
- Khoshkhabar, M.; Meshgini, S.; Afrouzian, R.; Danishvar, S. Automatic liver tumor segmentation from CT images using graph convolutional network. Sensors 2023, 23, 7561.
- Jang, H.; Lee, C.; Ko, H.; Lim, K. Data Augmentation of X-ray Images for Automatic Cargo Inspection of Nuclear Items. Sensors 2023, 23, 7537.
- Zhang, D.; Tang, N.; Zhang, D.; Qu, Y. Cascaded degradation-aware blind super-resolution. Sensors 2023, 23, 5338.
- Ahmad, I. A hybrid rule-based and machine learning system for Arabic check courtesy amount recognition. Sensors 2023, 23, 4260.
- Wang, F.; Shang, T.; Hu, C.; Liu, Q. Automatic modulation classification using hybrid data augmentation and lightweight neural network. Sensors 2023, 23, 4187.
- Sampath, V.; Maurtua, I.; Aguilar Martín, J.J.; Iriondo, A.; Lluvia, I.; Aizpurua, G. Intraclass image augmentation for defect detection using generative adversarial neural networks. Sensors 2023, 23, 1861.
- Zhao, Q.; Wu, H.; Zhu, J. Margin-Based Modal Adaptive Learning for Visible-Infrared Person Re-Identification. Sensors 2023, 23, 1426.
- Ren, D.; He, T.; Dong, H. Joint Cross-Consistency Learning and Multi-Feature Fusion for Person Re-Identification. Sensors 2022, 22, 9387.
- Li, Y.; Wang, L.; Wang, Z. Single-shot object detection via feature enhancement and channel attention. Sensors 2022, 22, 6857.
- Li, P.; Jin, J.; Jin, G.; Fan, L. Scale-space feature recalibration network for single image deraining. Sensors 2022, 22, 6823.
- Ren, D.; Yang, J.; Wei, Z. Multi-level cycle-consistent adversarial networks with attention mechanism for face sketch-photo synthesis. Sensors 2022, 22, 6725.
References
- Wang, Y.; Peng, L.; Schreier, J.; Bi, Y.; Black, A.; Malla, A.; Goossens, S.; Konstantatos, G. Silver telluride colloidal quantum dot infrared photodetectors and image sensors. Nat. Photonics 2024, 18, 236–242. [Google Scholar] [CrossRef]
- Zhang, P.; Zhou, F.; Wang, X.; Wang, S.; Song, Z. Omnidirectional imaging sensor based on conical mirror for pipelines. Opt. Lasers Eng. 2024, 175, 108003. [Google Scholar] [CrossRef]
- Chen, W.; Feng, S.; Yin, W.; Li, Y.; Qian, J.; Chen, Q.; Zuo, C. Deep-learning-enabled temporally super-resolved multiplexed fringe projection profilometry: High-speed kHz 3D imaging with low-speed camera. PhotoniX 2024, 5, 25. [Google Scholar] [CrossRef]
- Gano, B.; Bhadra, S.; Vilbig, J.M.; Ahmed, N.; Sagan, V.; Shakoor, N. Drone-based imaging sensors, techniques, and applications in plant phenotyping for crop breeding: A comprehensive review. Plant Phenome J. 2024, 7, e20100. [Google Scholar] [CrossRef]
- Agrawal, S.; Panda, R.; Mishro, P.K.; Abraham, A. A novel joint histogram equalization based image contrast enhancement. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 1172–1182. [Google Scholar] [CrossRef]
- Rao, B.S. Dynamic histogram equalization for contrast enhancement for digital images. Appl. Soft Comput. 2020, 89, 106114. [Google Scholar] [CrossRef]
- Vijayakumar, A.; Vairavasundaram, S. Yolo-based object detection models: A review and its applications. Multimed. Tools Appl. 2024, 83, 83535–83574. [Google Scholar] [CrossRef]
- Wang, A.; Chen, H.; Liu, L.; Chen, K.; Lin, Z.; Han, J. Yolov10: Real-time end-to-end object detection. Adv. Neural Inf. Process. Syst. 2025, 37, 107984–108011. [Google Scholar]
- Emek Soylu, B.; Guzel, M.S.; Bostanci, G.E.; Ekinci, F.; Asuroglu, T.; Acici, K. Deep-learning-based approaches for semantic segmentation of natural scene images: A review. Electronics 2023, 12, 2730. [Google Scholar] [CrossRef]
- Liu, Y.; Bai, X.; Wang, J.; Li, G.; Li, J.; Lv, Z. Image semantic segmentation approach based on DeepLabV3 plus network with an attention mechanism. Eng. Appl. Artif. Intell. 2024, 127, 107260. [Google Scholar] [CrossRef]
- Lepcha, D.C.; Goyal, B.; Dogra, A.; Sharma, K.P.; Gupta, D.N. A deep journey into image enhancement: A survey of current and emerging trends. Inf. Fusion. 2023, 93, 36–76. [Google Scholar] [CrossRef]
- Archana, R.; Jeevaraj, P.E. Deep learning models for digital image processing: A review. Artif. Intell. Rev. 2024, 57, 11. [Google Scholar] [CrossRef]
- Badjie, B.; Cecílio, J.; Casimiro, A. Adversarial attacks and countermeasures on image classification-based deep learning models in autonomous driving systems: A systematic review. ACM Comput. Surv. 2024, 57, 1–52. [Google Scholar] [CrossRef]
- Zhao, T.; Guo, P.; Wei, Y. Road friction estimation based on vision for safe autonomous driving. Mech. Syst. Signal Process. 2024, 208, 111019. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, W.; Chen, H.; Cheng, K.T. Medianomaly: A comparative study of anomaly detection in medical images. Med. Image Anal. 2025, 102, 103500. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; He, Y.; Li, F.; Han, L.; You, C.; Wang, B. Segment anything in medical images. Nat. Commun. 2024, 15, 654. [Google Scholar] [CrossRef] [PubMed]
- Gui, S.; Song, S.; Qin, R.; Tang, Y. Remote sensing object detection in the deep learning era—A review. Remote Sens. 2024, 16, 327. [Google Scholar] [CrossRef]
- Zhao, S.; Chen, H.; Zhang, X.; Xiao, P.; Bai, L.; Ouyang, W. Rs-mamba for large remote sensing image dense prediction. IEEE Trans. Geosci. Remote Sens. 2024. [Google Scholar] [CrossRef]
- Pandeeswari, M.R.M.A.; Rajakumar, G. Deep intelligent technique for person Re-identification system in surveillance images. Pattern Recognit. 2025, 162, 111349. [Google Scholar] [CrossRef]
- Luo, Z.; Yang, W.; Yuan, Y.; Gou, R.; Li, X. Semantic segmentation of agricultural images: A survey. Inf. Process. Agric. 2024, 11, 172–186. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Wang, M.; Hsia, C.-H. Artificial Intelligence and Machine Learning in Sensing and Image Processing. Sensors 2025, 25, 1870. https://doi.org/10.3390/s25061870
Chen J, Wang M, Hsia C-H. Artificial Intelligence and Machine Learning in Sensing and Image Processing. Sensors. 2025; 25(6):1870. https://doi.org/10.3390/s25061870
Chicago/Turabian StyleChen, Jing, Miaohui Wang, and Chih-Hsien Hsia. 2025. "Artificial Intelligence and Machine Learning in Sensing and Image Processing" Sensors 25, no. 6: 1870. https://doi.org/10.3390/s25061870
APA StyleChen, J., Wang, M., & Hsia, C.-H. (2025). Artificial Intelligence and Machine Learning in Sensing and Image Processing. Sensors, 25(6), 1870. https://doi.org/10.3390/s25061870