Improvement and Validation of a Smart Road Traffic Noise Model Based on Vehicles Tracking Using Image Recognition: EAgLE 3.0
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study Description
2.2. Software and Resources
3. Model Implementation
3.1. Inference
3.2. Geometric Transformation
3.3. Data Treatment
3.4. Noise Estimation
4. Results and Discussions
4.1. Cross-Model Comparison
4.2. Discussion and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Environmental Bureau. Noise Pollution. Available online: https://eeb.org/work-areas/air-and-noise-pollution/ (accessed on 20 October 2023).
- Singh, D.; Kumari, N.; Sharma, P. A Review of Adverse Effects of Road Traffic Noise on Human Health. Fluct. Noise Lett. 2018, 17, 1830001. [Google Scholar] [CrossRef]
- Stansfeld, S.; Clark, C.; Smuk, M.; Gallacher, J.; Babisch, W. Road traffic noise, noise sensitivity, noise annoyance, psychological and physical health and mortality. Environ. Health 2021, 20, 32. [Google Scholar] [CrossRef] [PubMed]
- Minichilli, F.; Gorini, F.; Ascari, E.; Bianchi, F.; Coi, A.; Fredianelli, L.; Licitra, G.; Manzoli, F.; Mezzasalma, L.; Cori, L. Annoyance Judgment and Measurements of Environmental Noise: A Focus on Italian Secondary Schools. Int. J. Environ. Res. Public Health 2018, 15, 208. [Google Scholar] [CrossRef] [PubMed]
- Zaman, M.; Muslim, M.; Jehangir, A. Environmental noise-induced cardiovascular, metabolic and mental health disorders: A brief review. Environ. Sci. Pollut. Res. 2022, 29, 76485–76500. [Google Scholar] [CrossRef]
- Banerjee, D. Road Traffic Noise Exposure and Annoyance: A Cross-Sectional Study among Adult Indian Population. Noise Health 2013, 15, 342–346. [Google Scholar] [CrossRef]
- Halonen, J.I.; Dehbi, H.M.; Hansell, A.L.; Gulliver, J.; Fecht, D.; Blangiardo, M.; Kelly, F.J.; Chaturvedi, N.; Kivimäki, M.; Tonne, C. Associations of Night-Time Road Traffic Noise with Carotid Intima-Media Thickness and Blood Pressure: The Whitehall II and SABRE Study Cohorts. Environ. Int. 2017, 98, 54–61. [Google Scholar] [CrossRef]
- Sørensen, M.; Hvidtfeldt, U.A.; Poulsen, A.H.; Thygesen, L.C.; Frohn, L.M.; Khan, J.; Raaschou-Nielsen, O. Long-Term Exposure to Transportation Noise and Risk of Type 2 Diabetes: A Cohort Study. Environ. Res. 2023, 217, 114795. [Google Scholar] [CrossRef]
- Wang, H.; Liang, H.; Yu, D.; Hou, Q.; Zeng, W. A new urban road traffic noise exposure assessment method based on building land-use types and temporal traffic demand estimation. J. Environ. Manag. 2025, 376, 124604. [Google Scholar] [CrossRef]
- Petri, D.; Licitra, G.; Vigotti, M.A.; Fredianelli, L. Effects of exposure to road, railway, airport and recreational noise on blood pressure and hypertension. Int. J. Environ. Res. Public Health 2021, 18, 9145. [Google Scholar] [CrossRef]
- Lee, P.J.; Park, S.H.; Jeong, J.H.; Choung, T.; Kim, K.Y. Association between transportation noise and blood pressure in adults living in multi-storey residential buildings. Environ. Int. 2019, 132, 105101. [Google Scholar] [CrossRef]
- Van Kempen, E.; Wolfgang, B. The quantitative relationship between road traffic noise and hypertension: A meta-analysis. J. Hypertens. 2012, 30, 1075–1086. [Google Scholar] [CrossRef]
- Mehrotra, A.; Shukla, S.P.; Shukla, A.K.; Manar, M.K.; Singh, S.K.; Mehrotra, M. A Comprehensive Review of Auditory and Non-Auditory Effects of Noise on Human Health. Noise Health 2024, 26, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Erickson, L.C.; Newman, R.S. Influences of background noise on infants and children. Curr. Dir. Psychol. Sci. 2017, 26, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Baquero Larriva, M.T.; Higueras García, E. Differences in perceptions of the urban acoustic environment in older adults: A systematic review. J. Popul. Ageing 2023, 16, 781–813. [Google Scholar] [CrossRef]
- Fredianelli, L.; Stefano, C.; Licitra, G. A procedure for deriving wind turbine noise limits by taking into account annoyance. Sci. Total Environ. 2019, 648, 728–736. [Google Scholar] [CrossRef]
- European Commission. Directive 2002/49/EC Relating to the Assessment and Management of Environmental Noise; European Commission: Brussels, Belgium, 2002. [Google Scholar]
- Tong, H.; Jian, K. Relationships between noise complaints and socio-economic factors in England. Sustain. Cities Soc. 2021, 65, 102573. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Z.; Wu, Z.; Hou, Q. Urban network noise control based on road grade optimization considering comprehensive traffic environment benefit. J. Environ. Manag. 2024, 364, 121451. [Google Scholar] [CrossRef]
- Wang, X.; Lin, J.; Liang, H.; Wang, H. A regional road network traffic noise limit prediction method based on design elements. J. Acoust. Soc. Am. 2025, 157, 527–537. [Google Scholar] [CrossRef]
- Li, C.; Xu, P. Application on traffic flow prediction of machine learning in intelligent transportation. Neural Comput. Appl. 2021, 33, 613–624. [Google Scholar] [CrossRef]
- Asdrubali, F.; D’Alessandro, F. Innovative approaches for noise management in smart cities: A review. Curr. Pollut. Rep. 2018, 4, 143–153. [Google Scholar] [CrossRef]
- Liguori, C.; Paolillo, A.; Ruggiero, A.; Russo, D. A preliminary study on the estimation of the uncertainty of traffic noise measurements. In Proceedings of the 2016 IEEE International Instrumentation and Measurement Technology Conference Proceedings, Taipei, Taiwan, 23–26 May 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–6. [Google Scholar]
- Tutmez, B.; Baranovskii, A. Quantifying uncertainty in railway noise measurement. Measurement 2019, 137, 1–6. [Google Scholar] [CrossRef]
- Department of Transport (UK). Calculation of Road Traffic Noise; Department of Transport: London, UK, 1988. [Google Scholar]
- Heutschi, K. SonRoad: New Swiss Road Traffic Model. Acta Acust. United Acust. 2004, 90, 548–554. [Google Scholar]
- Dutilleux, G.; Defrance, J.; Ecotière, D.; Gauvreau, B.; Bérengier, M.; Besnard, F.; Le Duc, E. NMPB-Routes-2008: The Revision of the French Method for Road Traffic Noise Prediction. Acta Acust. United Acust. 2010, 96, 452–462. [Google Scholar] [CrossRef]
- RLS Richtlinien für den Lärmschutzan Strassen; BM für Verkehr: Bonn, Germany, 1990.
- Watts, G. Harmonoise Prediction Model for Road Traffic Noise; Published Project Report PPR034; TRL: Wokingham, UK, 2005. [Google Scholar]
- Quartieri, J.; Iannone, G.; Guarnaccia, C. On the Improvement of Statistical Traffic Noise Prediction Tools. In Proceedings of the 11th WSEAS International Conference on “Acoustics & Music: Theory & Applications” (AMTA’10), Iasi, Romania, 13–15 June 2010; pp. 201–207. [Google Scholar]
- Kephalopoulos, S.; Paviotti, M.; Anfosso-Lédée, F. Common Noise Assessment Methods in Europe (CNOSSOS-EU); Publications Office of the European Union: Luxembourg, 2012; ISBN 9789279252815. [Google Scholar]
- Guarnaccia, C.; Mascolo, A.; Aumond, P.; Can, A.; Rossi, D. From Early to Recent Models: A Review of the Evolution of Road Traffic and Single Vehicles Noise Emission Modelling. Curr. Pollut. Rep. 2024, 10, 662–683. [Google Scholar] [CrossRef]
- Rossi, D.; Mascolo, A.; Guarnaccia, C. Calibration and Validation of a Measurements-Independent Model for Road Traffic Noise Assessment. Appl. Sci. 2023, 13, 6168. [Google Scholar] [CrossRef]
- Rossi, D.; Pascale, A.; Mascolo, A.; Guarnaccia, C. Coupling Different Road Traffic Noise Models with a Multilinear Regressive Model: A Measurements-Independent Technique for Urban Road Traffic Noise Prediction. Sensors 2024, 24, 2275. [Google Scholar] [CrossRef]
- Gauvreau, B. Long-Term Experimental Database for Environmental Acoustics. Appl. Acoust. 2013, 74, 958–967. [Google Scholar] [CrossRef]
- Guarnaccia, C. EAgLE: Equivalent Acoustic Level Estimator Proposal. Sensors 2020, 20, 701. [Google Scholar] [CrossRef]
- Pascale, A.; Macedo, E.; Guarnaccia, C.; Coelho, M.C. Smart mobility procedure for road traffic noise dynamic estimation by video analysis. Appl. Acoust. 2023, 208, 109381. [Google Scholar] [CrossRef]
- Robert, K. Video-based traffic monitoring at day and night vehicle features detection tracking. In Proceedings of the 2009 12th International IEEE Conference on Intelligent Transportation Systems, St. Louis, MO, USA, 4–7 October 2009; IEEE: Piscataway, NJ, USA, 2009. [Google Scholar]
- Wan, Y.; Yan, H.; Bill, B. Camera calibration and vehicle tracking: Highway traffic video analytics. Transp. Res. Part C Emerg. Technol. 2014, 44, 202–213. [Google Scholar] [CrossRef]
- Koutsia, A.; Semertzidis, T.; Dimitropoulos, K.; Grammalidis, N.; Georgouleas, K. Intelligent traffic monitoring and surveillance with multiple cameras. In Proceedings of the 2008 International Workshop on Content-Based Multimedia Indexing, London, UK, 18–20 June 2008; pp. 125–132. [Google Scholar] [CrossRef]
- Fredianelli, L.; Carpita, S.; Bernardini, M.; Del Pizzo, L.G.; Brocchi, F.; Bianco, F.; Licitra, G. Traffic Flow Detection Using Camera Images and Machine Learning Methods in ITS for Noise Map and Action Plan Optimization. Sensors 2022, 22, 1929. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://docs.roboflow.com/api-reference/introduction (accessed on 27 January 2025).
- Available online: https://blog.roboflow.com/estimate-speed-computer-vision/ (accessed on 27 January 2025).
- Hussain, M. YOLO-v1 to YOLO-v8, the rise of YOLO and its complementary nature toward digital manufacturing and industrial defect detection. Machines 2023, 11, 677. [Google Scholar] [CrossRef]
- Bai, R.; Wang, M.; Zhang, Z.; Lu, J.; Shen, F. Automated construction site monitoring based on improved YOLOv8-seg instance segmentation algorithm. IEEE Access 2023, 11, 139082–139096. [Google Scholar] [CrossRef]
- Sohan, M.; Sai Ram, T.; Reddy, R.; Venkata, C. A review on yolov8 and its advancements. In Proceedings of the International Conference on Data Intelligence and Cognitive Informatics, Tirunelveli, India, 27–28 June 2023; Springer: Singapore, 2024. [Google Scholar]
- Zhang, Y.; Sun, P.; Jiang, Y.; Yu, D.; Weng, F.; Yuan, Z.; Luo, P.; Liu, W.; Wang, X. Bytetrack: Multi-object tracking by associating every detection box. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Springer Nature: Cham, Switzerland, 2022; pp. 1–21. [Google Scholar]
- Available online: https://github.com/ifzhang/ByteTrack (accessed on 15 December 2024).
- Available online: https://github.com/roboflow/supervision/tree/develop/examples/speed_estimation (accessed on 27 January 2025).
- Available online: https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/how-to-estimate-vehicle-speed-with-computer-vision.ipynb?ref=blog.roboflow.com (accessed on 27 January 2025).
- Agarwal, A.; Jawahar, C.V.; Narayanan, P.J. A Survey of Planar Homography Estimation Techniques; Tech. Rep. IIIT/TR/2005/12; Centre for Visual Information Technology: Hyderabad, India, 2005. [Google Scholar]
- Savitzky, A.; Golay, M.J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Shouran, M.; Elgamli, E. Design and implementation of Butterworth filter. Int. J. Innov. Res. Sci. Eng. Technol. 2020, 9, 7975–7983. [Google Scholar]
- Kok, A.; Van Beek, A. Amendments for CNOSSOS-EU: Description of Issues and Proposed Solutions; RIVM: Bilthoven, The Netherlands, 2019. [Google Scholar]
- European Union. Commission Delegated Directive (EU) 2021/1226 of 21 December 2020 Amending, for the Purposes of Adapting to Scientific and Technical Progress, Annex II to Directive 2002/49/EC of the European Parliament and of the Council as Regards Common Noise Assessment Methods; European Union: Brussels, Belgium, 2020. [Google Scholar]
- Burgess, M.A. Noise prediction for urban traffic conditions—Related to measurements in the Sydney metropolitan area. Appl. Acoust. 1977, 10, 1–7. [Google Scholar] [CrossRef]
- Centre Scientifique et Technique du Batiment. Etude théorique et expérimentale de la propagation acoustique. Revue d’Acoustique 1991, 70. [Google Scholar]
- International Organization for Standardization. Acoustics-Attenuation of Sound During Propagation Outdoors: Part 2: General Method of Calculation; International Organization for Standardization: Geneva, Switzerland, 1996. [Google Scholar]
Category of Vehicle | Number of Annotations |
---|---|
Cars | 259 |
Heavy vehicles | 54 |
Two wheels | 1 |
Category of Vehicle | Number of Frames |
---|---|
Learning | 90 |
Validating | 2 |
Testing | 6 |
Position Derivative | 2nd-Order Polynomial Smoothing | 3rd-Order Polynomial Smoothing | Savitsky–Golay | Butterworth Filter | |
---|---|---|---|---|---|
All vehicles | |||||
mean | 103.36 | 103.00 | 103.73 | 103.59 | 102.66 |
std | 30.03 | 20.67 | 21.23 | 20.63 | 24.56 |
Light vehicles | |||||
mean | 105.81 | 105.91 | 106.57 | 106.42 | 105.11 |
std | 28.35 | 20.46 | 21.11 | 20.45 | 23.08 |
Heavy vehicles | |||||
mean | 90.92 | 88.47 | 89.54 | 89.46 | 90.38 |
std | 90.92 | 88.47 | 89.54 | 89.46 | 90.38 |
σ/vehicles | |||||
mean | 20.68 | 3.22 | 5.86 | 4.30 | 9.79 |
std | 8.96 | 3.53 | 3.85 | 3.24 | 11.45 |
Video Sample | 1.1 | 1.2 | 1.3 | 1.4 | 1.5 | 2.1 | 2.2 | 2.3 | 2.4 | 2.5 |
---|---|---|---|---|---|---|---|---|---|---|
manual counts | 76 | 72 | 89 | 75 | 85 | 92 | 85 | 102 | 80 | 59 |
automatic detection | 72 | 69 | 89 | 70 | 82 | 92 | 83 | 101 | 79 | 58 |
Mean Error | Mean Absolute Error | Mean Absolute Percentage Error | Mean Percentage Error | Root Mean Square Error |
---|---|---|---|---|
−1.0 dBA | 3.6 dBA | 4.8% | −1.4% | 4.4 dBA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guarnaccia, C.; Catherin, U.; Mascolo, A.; Rossi, D. Improvement and Validation of a Smart Road Traffic Noise Model Based on Vehicles Tracking Using Image Recognition: EAgLE 3.0. Sensors 2025, 25, 1750. https://doi.org/10.3390/s25061750
Guarnaccia C, Catherin U, Mascolo A, Rossi D. Improvement and Validation of a Smart Road Traffic Noise Model Based on Vehicles Tracking Using Image Recognition: EAgLE 3.0. Sensors. 2025; 25(6):1750. https://doi.org/10.3390/s25061750
Chicago/Turabian StyleGuarnaccia, Claudio, Ulysse Catherin, Aurora Mascolo, and Domenico Rossi. 2025. "Improvement and Validation of a Smart Road Traffic Noise Model Based on Vehicles Tracking Using Image Recognition: EAgLE 3.0" Sensors 25, no. 6: 1750. https://doi.org/10.3390/s25061750
APA StyleGuarnaccia, C., Catherin, U., Mascolo, A., & Rossi, D. (2025). Improvement and Validation of a Smart Road Traffic Noise Model Based on Vehicles Tracking Using Image Recognition: EAgLE 3.0. Sensors, 25(6), 1750. https://doi.org/10.3390/s25061750