Dim Range-Spread Target Detection for Stepped-Frequency Radar Using a Bernoulli Extended Target Filter
Abstract
:1. Introduction
- 1.
- The challenging problem of dim extended target detection in stepped-frequency radar is studied. The Bernoulli extended target filter is introduced to address this issue. Bayesian modeling for the target and measurements is constructed. The Bernoulli extended target filter, along with its particle filter implementation, is designed.
- 2.
- Performance evaluation results, compared with benchmark methods, are presented. The target buried in noise can be reliably detected, and the detection performance is remarkably improved compared to classical methods. Meanwhile, the range and velocity of the target are decoupled.
2. Problem Formulation
3. Bayesian Modeling
3.1. Target Dynamic Model
3.2. Measurement Model
4. The Bernoulli Extended Target Filter and Its Approximated Implementation
4.1. The Bernoulli Extended Target Filter
4.2. Particle Filter Implementation
5. Numerical Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Einstein, T.H. Generation of High Resolution Radar Range Profiles Andrange Profile Auto-Correlation Functions Using Stepped-Frequency Pulsetrain; Technical Report; Massachusetts Institute of Technology, Lincoln Laboratory: Lexington, MA, USA, 1984. [Google Scholar]
- Wehner, D. High-Resolution Radar; ArtechHouse: Boston, MA, USA, 1995. [Google Scholar]
- Levanon, N. Stepped-frequency pulse-train radar signal. IEE Proc.-Radar Sonar Navig. 2002, 149, 297–309. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, T.; Meng, H.; Wang, X. Fundamental limits of HRR profiling and velocity compensation for stepped-frequency waveforms. IEEE Trans. Signal Process. 2014, 62, 4490–4504. [Google Scholar] [CrossRef]
- Gill, G.S. Step frequency waveform design and processing for detection of moving targets in clutter. In Proceedings of the IEEE International Radar Conference, Alexandria, VA, USA, 8–11 May 1995; pp. 573–578. [Google Scholar]
- Liu, Y.; Meng, H.; Li, G.; Wang, X. Velocity estimation and range shift compensation for high range resolution profiling in stepped-frequency radar. IEEE Geosci. Remote Sens. Lett. 2010, 7, 791–795. [Google Scholar] [CrossRef]
- Gilholm, K.; Salmond, D. Spatial distribution model for tracking extended objects. IET Radar Sonar Navig. 2005, 152, 364–371. [Google Scholar] [CrossRef]
- Koch, J.W. Bayesian approach to extended object and cluster tracking using random matrices. IEEE Trans. Aerosp. Electron. Syst. 2008, 44, 1042–1059. [Google Scholar] [CrossRef]
- Hughes, P. A high-resolution radar detection strategy. IEEE Trans. Aerosp. Electron. Syst. 1983, AES-19, 663–667. [Google Scholar] [CrossRef]
- Penglang, S.; Shuwen, X.; Hongwei, L. Range-spread target detection using consecutive HRRPs. IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 647–665. [Google Scholar]
- Tuncer, B.; Özkan, E. Random matrix based extended target tracking with orientation: A new model and inference. IEEE Trans. Signal Process. 2021, 69, 1910–1923. [Google Scholar] [CrossRef]
- Cheng, X.; Ji, H.; Zhang, Y. Multiple extended target joint tracking and classification based on GPS and LMB filter. IEEE Signal Process. Lett. 2024, 31, 1139–1143. [Google Scholar] [CrossRef]
- Chen, M.; Tharmarasa, R.; Kirubarajan, T.; Chomal, S. An assignment method for multiple extended target tracking with azimuth ambiguity based on pseudo measurement set. IEEE Trans. Intell. Transp. Syst. 2024, 25, 15512–15531. [Google Scholar] [CrossRef]
- Lundquist, C.; Granström, K.; Orguner, U. An extended target CPHD filter and a gamma Gaussian inverse Wishart implementation. IEEE J. Sel. Topics Signal Process. 2013, 7, 472–483. [Google Scholar] [CrossRef]
- Granström, K.; Orguner, U. A PHD filter for tracking multiple extended targets using random matrices. IEEE Trans. Signal Process. 2012, 60, 5657–5671. [Google Scholar] [CrossRef]
- Li, G.; Li, G.; He, Y. Distributed GGIW-CPHD-Based Extended Target Tracking Over a Sensor Network. IEEE Signal Process. Lett. 2022, 29, 842–846. [Google Scholar] [CrossRef]
- Ristic, B.; Sherrah, J. Bernoulli filter for joint detection and tracking of an extended object in clutter. IET Radar Sonar Navig. 2013, 7, 26–35. [Google Scholar] [CrossRef]
- Cai, F.; Fan, H.; Fu, Q. Bernoulli filter for extended target in clutter using poisson models. Chin. J. Electro. 2015, 24, 326–331. [Google Scholar] [CrossRef]
- Cai, F. Monopulse radar track-before-detect using Bernoulli filter. IET Signal Process. 2022, 2022, 1011–1021. [Google Scholar] [CrossRef]
- Kim, D.Y.; Rosenberg, L.; Ristic, B.; Guan, R.P. Track-before-detect using an airborne multichannel radar in the maritime domain. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 2221–2231. [Google Scholar] [CrossRef]
- Üney, M.; Horridge, P.; Mulgrew, B.; Maskell, S. Coherent Long-Time Integration and Bayesian Detection with Bernoulli Track-Before-Detect. IEEE Signal Process. Lett. 2023, 30, 239–243. [Google Scholar] [CrossRef]
- Yi, W.; Jiang, H.; Kirubarajan, T.; Kong, L.; Yang, X. Track-Before-Detect Strategies for Radar Detection in G0-Distributed Clutter. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 2516–2533. [Google Scholar] [CrossRef]
- Liang, M.; Kropfreiter, T.; Meyer, F. A BP Method for Track-Before-Detect. IEEE Signal Process. Lett. 2023, 30, 1137–1141. [Google Scholar] [CrossRef]
- Gao, J.; Du, J.; Wang, W. Radar Detection of Fluctuating Targets under Heavy-Tailed Clutter Using Track-Before-Detect. Sensors 2018, 18, 2241. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Ren, W.; Xiu, C.; Li, Y. Improved Particle Filter Algorithm for Multi-Target Detection and Tracking. Sensors 2024, 24, 4708. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Dai, X.; Yang, B. Fast imaging algorithm for the multiple receiver synthetic aperture sonars. IET Radar Sonar Navigat. 2018, 12, 1276–1284. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, P.; Sun, H. Frequency-domain multireceiver synthetic aperture sonar imagery with Chebyshev polynomials. Electron. Lett. 2022, 58, 995–998. [Google Scholar] [CrossRef]
- Zhu, J.; Xie, Z.; Jiang, N.; Song, Y.; Han, S.; Liu, W.; Huang, X. Delay-Doppler map shaping through oversampled complementary sets for high speed target detection. Remote Sens. 2024, 16, 2898. [Google Scholar] [CrossRef]
- Lan, J.; Li, X.R. Tracking of extended object or target group using random matrix—Part II: Irregular object. In Proceedings of the 15th International Conference on Information Fusion (FUSION), Singapore, 9–12 July 2012; pp. 2185–2192. [Google Scholar]
- Mahler, R.P. Statistical Multisource-Multitarget Information Fusion; Artech House: Boston, MA, USA, 2007. [Google Scholar]
- Zhang, X.; Willet, P.-K.; Bar-Shalom, Y. Detection and localization of multiple unresolved extended targets via monopulse radar signal processing. IEEE Trans. Aerosp. Electron. Syst. 2009, 45, 455–472. [Google Scholar] [CrossRef]
- Varsi, A.; Taylor, J.; Kekempanos, L.; Knapp, E.P.; Maskell, S. A fast parallel particle filter for shared memory systems. IEEE Signal Process. Lett. 2020, 27, 1570–1574. [Google Scholar] [CrossRef]
35 GHz | 512 | 4 s | 750 kHz | 0.4 s | 0.4 s |
Parameters | Proposed | BPF-X | M out of N |
---|---|---|---|
0.0025 | 0.0025 | 0.0027 | |
0.9654 | 0.6733 | 0.6761 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, F.; Tang, M. Dim Range-Spread Target Detection for Stepped-Frequency Radar Using a Bernoulli Extended Target Filter. Sensors 2025, 25, 1426. https://doi.org/10.3390/s25051426
Cai F, Tang M. Dim Range-Spread Target Detection for Stepped-Frequency Radar Using a Bernoulli Extended Target Filter. Sensors. 2025; 25(5):1426. https://doi.org/10.3390/s25051426
Chicago/Turabian StyleCai, Fei, and Meiyu Tang. 2025. "Dim Range-Spread Target Detection for Stepped-Frequency Radar Using a Bernoulli Extended Target Filter" Sensors 25, no. 5: 1426. https://doi.org/10.3390/s25051426
APA StyleCai, F., & Tang, M. (2025). Dim Range-Spread Target Detection for Stepped-Frequency Radar Using a Bernoulli Extended Target Filter. Sensors, 25(5), 1426. https://doi.org/10.3390/s25051426