Highly Sensitive Optical Time-Domain Reflectometry: Detecting 0.01 dB Leakage over 1000 km for Classical and Quantum Communication
Abstract
:1. Introduction
2. Monitoring Concept
2.1. OTDR Operation
2.2. Data Processing
3. Leakage Detection
4. Results
4.1. Detection Without Reference
4.2. Detection with Reference
4.3. Temporal Stability
5. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Renner, R.; Wolf, R. Quantum Advantage in Cryptography. AIAA J. 2023, 61, 1895–1910. [Google Scholar] [CrossRef]
- Pirandola, S.; Laurenza, R.; Ottaviani, C.; Banchi, L. Fundamental limits of repeaterless quantum communications. Nat. Commun. 2017, 8, 15043. [Google Scholar] [CrossRef]
- Boaron, A.; Boso, G.; Rusca, D.; Vulliez, C.; Autebert, C.; Caloz, M.; Perrenoud, M.; Gras, G.; Bussières, F.; Li, M.J.; et al. Secure Quantum Key Distribution over 421 km of Optical Fiber. Phys. Rev. Lett. 2018, 121, 190502. [Google Scholar] [CrossRef]
- Wang, S.; Chen, W.; Guo, J.F.; Yin, Z.Q.; Li, H.W.; Zhou, Z.; Guo, G.C.; Han, Z.F. 2 GHz clock quantum key distribution over 260 km of standard telecom fiber. Opt. Lett. 2012, 37, 1008. [Google Scholar] [CrossRef] [PubMed]
- Korzh, B.; Lim, C.C.W.; Houlmann, R.; Gisin, N.; Li, M.J.; Nolan, D.; Sanguinetti, B.; Thew, R.; Zbinden, H. Provably secure and practical quantum key distribution over 307 km of optical fibre. Nat. Photonics 2015, 9, 163–168. [Google Scholar] [CrossRef]
- Jouguet, P.; Kunz-Jacques, S.; Leverrier, A.; Grangier, P.; Diamanti, E. Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photonics 2013, 7, 378–381. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, H.; Shao, Y.; Pi, Y.; Li, Y.; Liu, B.; Huang, W.; Xu, B. Experimental demonstration of high-rate discrete-modulated continuous-variable quantum key distribution system. Opt. Lett. 2022, 47, 3307. [Google Scholar] [CrossRef]
- Wang, S.; Yin, Z.Q.; He, D.Y.; Chen, W.; Wang, R.Q.; Ye, P.; Zhou, Y.; Fan-Yuan, G.J.; Wang, F.X.; Chen, W.; et al. Twin-field quantum key distribution over 830-km fibre. Nat. Photonics 2022, 16, 154–161. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, W.J.; Jiang, C.; Chen, J.P.; Zhang, C.; Pan, W.X.; Ma, D.; Dong, H.; Xiong, J.M.; Zhang, C.J.; et al. Experimental Twin-Field Quantum Key Distribution over 1000 km Fiber Distance. Phys. Rev. Lett. 2023, 130, 210801. [Google Scholar] [CrossRef] [PubMed]
- Simon, C.; De Riedmatten, H.; Afzelius, M.; Sangouard, N.; Zbinden, H.; Gisin, N. Quantum repeaters with photon pair sources and multimode memories. Phys. Rev. Lett. 2007, 98, 190503. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.A.; Zhang, Q.; Chen, T.Y.; Cai, W.Q.; Liao, S.K.; Zhang, J.; Chen, K.; Yin, J.; Ren, J.G.; Chen, Z.; et al. An integrated space-to-ground quantum communication network over 4,600 kilometres. Nature 2021, 589, 214–219. [Google Scholar] [CrossRef]
- Kirsanov, N.S.; Pastushenko, V.A.; Kodukhov, A.D.; Yarovikov, M.V.; Sagingalieva, A.B.; Kronberg, D.A.; Pflitsch, M.; Vinokur, V.M. Forty thousand kilometers under quantum protection. Sci. Rep. 2023, 13, 8756. [Google Scholar] [CrossRef]
- Popp, A.; Sedlmeir, F.; Stiller, B.; Marquardt, C. Eavesdropper localization for quantum and classical channels via nonlinear scattering. Opt. Quantum 2024, 2, 21–28. [Google Scholar] [CrossRef]
- Sushchev, I.S.; Bulavkin, D.S.; Bugai, K.E.; Sidelnikova, A.S.; Dvoretskiy, D.A. Trojan-horse attack on a real-world quantum key distribution system: Theoretical and experimental security analysis. Phys. Rev. Appl. 2024, 22, 034032. [Google Scholar] [CrossRef]
- Kodukhov, A.D.; Pastushenko, V.A.; Kirsanov, N.S.; Kronberg, D.A.; Pflitsch, M.; Vinokur, V.M. Boosting Quantum Key Distribution via the End-to-End Loss Control. Cryptography 2023, 7, 38. [Google Scholar] [CrossRef]
- Long, G.L.; Liu, X.S. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 2002, 65, 032302. [Google Scholar] [CrossRef]
- Pan, D.; Long, G.; Yin, L.; Sheng, Y.B.; Ruan, D.; Ng, S.; Lu, J.; Hanzo, L. The Evolution of Quantum Secure Direct Communication: On the Road to the Qinternet. IEEE Commun. Surv. Tutor. 2024, 26, 1898–1949. [Google Scholar] [CrossRef]
- Zeng, H.; Du, M.M.; Zhong, W.; Zhou, L.; Sheng, Y.B. High-capacity device-independent quantum secure direct communication based on hyper-encoding. Fundam. Res. 2023, 4, 851–857. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Lu, Y.; Chai, G.; Yu, H.; Liang, K.; Wang, L. Realization of Quantum Secure Direct Communication with Continuous Variable. Research 2023, 6, 0193. [Google Scholar] [CrossRef] [PubMed]
- Kirsanov, N.; Pastushenko, V.; Kodukhov, A.; Aliev, A.; Yarovikov, M.; Strizhak, D.; Zarubin, I.; Smirnov, A.; Pflitsch, M.; Vinokur, V. Loss Control-Based Key Distribution under Quantum Protection. Entropy 2024, 26, 437. [Google Scholar] [CrossRef]
- Barnoski, M.; Rourke, M.; Jensen, S.; Melville, R. Optical time domain reflectometer. Appl. Opt. 1977, 16, 2375–2379. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Dang, R.; Tan, D.; Liu, L.; Wang, H. 123 km Φ-OTDR system based on bidirectional erbium-doped fiber amplifier. In Proceedings of the Optical Communication, Optical Fiber Sensors, and Optical Memories for Big Data Storage, Beijing, China, 9–11 May 2016; Volume 10158, pp. 191–194. [Google Scholar]
- Wang, Z.; Zeng, J.; Li, J.; Peng, F.; Zhang, L.; Zhou, Y.; Wu, H.; Rao, Y. 175 km phase-sensitive OTDR with hybrid distributed amplification. In Proceedings of the 23rd International Conference on Optical Fibre Sensors, Santander, Spain, 2–6 June 2014; Volume 9157, pp. 1562–1565. [Google Scholar]
- Wang, Y.; Wang, Y.; He, C.; Liu, X.; Bai, Q.; Jin, B. 190 km Φ-OTDR with bidirectional Raman and relay erbium-doped fiber hybrid amplification. Opt. Lasers Eng. 2023, 166, 107569. [Google Scholar] [CrossRef]
- Fan, C.; Li, H.; Zhang, K.; Liu, H.; Sun, Y.; Liu, H.; Yan, B.; Yan, Z.; Liu, D.; Shum, P.P.; et al. 300 km ultralong fiber optic DAS system based on optimally designed bidirectional EDFA relays. Photonics Res. 2023, 11, 968–977. [Google Scholar] [CrossRef]
- Sumida, M.; Imai, T.; Furukawa, S.i. Fault location on optical amplifier submarine systems. In Proceedings of the Conference Proceedings. 10th Anniversary. IMTC/94. Advanced Technologies in I & M. 1994 IEEE Instrumentation and Measurement Technolgy Conference (Cat. No. 94CH3424-9), Hamamatsu, Japan, 10–12 May 1994; pp. 110–113. [Google Scholar]
- Furukawa, S.i.; Tanaka, K.; Koyamada, Y.; Sumida, M. Enhanced coherent OTDR for long span optical transmission lines containing optical fiber amplifiers. IEEE Photonics Technol. Lett. 1995, 7, 540–542. [Google Scholar] [CrossRef]
- Sumida, M. Optical time domain reflectometry using an M-ary FSK probe and coherent detection. J. Lightwave Technol. 1996, 14, 2483–2491. [Google Scholar] [CrossRef]
- Otani, T.; Horiuchi, Y.; Kawazawa, T.; Goto, K.; Akiba, S. Fault localization of optical WDM submarine cable networks using coherent-optical time-domain reflectometry. IEEE Photonics Technol. Lett. 1998, 10, 1000–1002. [Google Scholar] [CrossRef]
- Iida, H.; Toge, K.; Ito, F. Environmental perturbation tracking in coherent OTDR for recovering detection sensitivity. In Proceedings of the 39th European Conference and Exhibition on Optical Communication (ECOC 2013), London, UK, 22–26 September 2013; pp. 1–3. [Google Scholar]
- Chen, M.; Zhang, M.; Chen, S.; Zhang, J.; Yan, S.; Wang, Y. Health monitoring of long-haul fiber communication system using chaotic OTDR. China Commun. 2020, 17, 1–11. [Google Scholar] [CrossRef]
- Fernández, M.P.; Rossini, L.A.B.; Pascual, J.P.; Caso, P.A.C. Enhanced fault characterization by using a conventional OTDR and DSP techniques. Opt. Express 2018, 26, 27127–27140. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, A.; Magri, L.; Rutigliano, D.; Invernizzi, P.; Sozio, E.; Alippi, C.; Binetti, S.; Boracchi, G. Known and unknown event detection in OTDR traces by deep learning networks. Neural Comput. Appl. 2022, 34, 19655–19673. [Google Scholar] [CrossRef]
- Abdelli, K.; Grießer, H.; Tropschug, C.; Pachnicke, S. Optical Fiber Fault Detection and Localization in a Noisy OTDR Trace Based on Denoising Convolutional Autoencoder and Bidirectional Long Short-Term Memory. J. Lightwave Technol. 2022, 40, 2254–2264. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, D.; Wang, Z.; Yang, H.; Yu, T.; Yao, Q.; Liu, S.; Wang, D.; Zhao, Y.; Li, H.; et al. Field trial of concurrent co-cable and co-trench optical fiber online identification based on ensemble learning. Opt. Express 2023, 31, 42850–42865. [Google Scholar] [CrossRef] [PubMed]
- Burdin, V.A.; Bourdine, A.V.; Zaitseva, E.S.; Praporshchikov, D.E. Application of MIMO concept to detect nonreflecting events on cable fiber traces. In Proceedings of the Optical Technologies for Telecommunications 2020; Andreev, V.A., Bourdine, A.V., Burdin, V.A., Morozov, O.G., Sultanov, A.C., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2021; Volume 11793, p. 117931B. [Google Scholar] [CrossRef]
- Desurvire, E.; Bayart, D.; Desthieux, B.; Bigo, S. Erbium-Doped Fiber Amplifiers: Device and System Developments; Wiley: Hoboken, NJ, USA, 2002. [Google Scholar]
- Kim, S.J.; Koh, K.; Boyd, S.; Gorinevsky, D. ℓ1 trend filtering. SIAM Rev. 2009, 51, 339–360. [Google Scholar] [CrossRef]
- Smirnov, A.; Yarovikov, M.; Zhdanova, E.; Gutor, A.; Vyatkin, M. An Optical-Fiber-Based Key for Remote Authentication of Users and Optical Fiber Lines. Sensors 2023, 23, 6390. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yarovikov, M.; Smirnov, A.; Aliev, A.; Strizhak, D. Highly Sensitive Optical Time-Domain Reflectometry: Detecting 0.01 dB Leakage over 1000 km for Classical and Quantum Communication. Sensors 2025, 25, 1407. https://doi.org/10.3390/s25051407
Yarovikov M, Smirnov A, Aliev A, Strizhak D. Highly Sensitive Optical Time-Domain Reflectometry: Detecting 0.01 dB Leakage over 1000 km for Classical and Quantum Communication. Sensors. 2025; 25(5):1407. https://doi.org/10.3390/s25051407
Chicago/Turabian StyleYarovikov, Michael, Alexander Smirnov, Aziz Aliev, and Daniel Strizhak. 2025. "Highly Sensitive Optical Time-Domain Reflectometry: Detecting 0.01 dB Leakage over 1000 km for Classical and Quantum Communication" Sensors 25, no. 5: 1407. https://doi.org/10.3390/s25051407
APA StyleYarovikov, M., Smirnov, A., Aliev, A., & Strizhak, D. (2025). Highly Sensitive Optical Time-Domain Reflectometry: Detecting 0.01 dB Leakage over 1000 km for Classical and Quantum Communication. Sensors, 25(5), 1407. https://doi.org/10.3390/s25051407