Improving Ultrasound B-Mode Image Quality with Coherent Plane-Wave Compounding Using Adaptive Beamformers Based on Minimum Variance
Abstract
:1. Introduction
2. Theoretical Basis of the Proposed Technique
3. Computer Modeling
4. In Situ Experiments
5. Results and Discussion
5.1. The Geometric Distortion
5.2. Contrast
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Demi, L. Practical Guide to Ultrasound Beam Forming: Beam Pattern and Image Reconstruction Analysis. Appl. Sci. 2018, 8, 1544. [Google Scholar] [CrossRef]
- Madhavanunni, A.N.; Panicker, M.R. Performance Evaluation of Beam Multiply and Sum Beamforming with Coherent Plane Wave Compounding: In-vitro Results. In Proceedings of the 2024 IEEE South Asian Ultrasonics Symposium (SAUS), Gujarat, India, 27–29 March 2024; pp. 1–4. [Google Scholar] [CrossRef]
- Montaldo, G.; Tanter, M.; Bercoff, J.; Benech, N.; Fink, M. Coherent planewave compounding for very high frame rate ultrasonography and transient elastography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2009, 56, 489–506. [Google Scholar] [CrossRef] [PubMed]
- Tanter, M.; Fink, M. Ultrafast imaging in biomedical ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2014, 61, 102–119. [Google Scholar] [CrossRef] [PubMed]
- Golfetto, C.; Ekroll, I.K.; Torp, H.; Løvstakken, L.; Avdal, J. Retrospective Transmit Beamforming and Coherent Plane-Wave Compounding for Microvascular Doppler Imaging: A Comparison Study. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 1105–1116. [Google Scholar] [CrossRef] [PubMed]
- Nightingale, K.; McAleavey, S.; Trahey, G. Shear-wave generation using acoustic radiation force: In vivo and ex vivo results. Ultrasound Med. Biol. 2003, 29, 1715–1723. [Google Scholar] [CrossRef] [PubMed]
- Campbell, N.A.; Brown, J.A. A Real-Time Dual-Mode High-Frequency Beamformer for Ultrafast and Focused Imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2022, 69, 1268–1276. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Ma, R.; Lin, Z.; Zhang, R.; Cai, Y.; Wu, W.; Wang, J. Improving Age of Information for Covert Communication With Time-Modulated Arrays. IEEE Internet Things J. 2025, 12, 1718–1731. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, R.; Zhang, H.; Miao, C.; Ma, Y.; Wu, W. Energy-Efficient Beamforming for Downlink Multi-User Systems with Dynamic Metasurface Antennas. IEEE Commun. Lett. 2024, 29, 284–288. [Google Scholar] [CrossRef]
- Dange, S. Synthetic Aperture Ultrasound Imaging A Review. In Proceedings of the 2020 IEEE 4th Conference on Information & Communication Technology (CICT), Chennai, India, 3–5 December 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Aliabadi, S.; Wang, J.; Yu, J. Adaptive scaled wiener postfilter beamformer for ultrasound imaging. In Proceedings of the URSI Asia-Pacific Radio Science Conference, Seoul, Republic of Korea, 21–25 August 2016; pp. 1449–1452. [Google Scholar]
- Capon, J. High resolution frequency-wavenumber spectrum analysis. Proc. IEEE 1969, 57, 1408–1418. [Google Scholar] [CrossRef]
- Zimbico, A.J. Benefits of Bayesian-Based Beamformer Combined with Winner Post-Filter For Adaptive Processing of Ultrasound Image Using Coherent Plane Wave Compounding Transmission. Doctoral Thesis (Doutorado em Engenharia Biomédica), Universidade Tecnológica Federal do Paraná—UTFPR, Curitiba, Brazil, 2018. [Google Scholar]
- Applebaum, S.; Chapman, D. Adaptive Arrays with Main Beam Constraints. IEEE Trans. Antennas Propag. 1976, 24, 650–662. [Google Scholar] [CrossRef]
- Zimbico, A.J.; Granado, D.W.; Schneider, F.K.; Maia, J.M.; Assef, A.A.; Pipa, D.; Costa, E.T. Beam domain adaptive beamforming using Generalized Sidelobe Canceller with coherence factor for medical ultrasound imaging. In Proceedings of the 2017 IEEE International Ultrasonics Symposium (IUS), Washington, DC, USA, 6–9 September 2017; pp. 1–4. [Google Scholar]
- Zeng, X.; Chen, C.; Wang, Y. Eigenspace-based minimum variance beamformer combined with Wiener postfilter for medical ultrasound imaging. Ultrasonics 2012, 52, 996–1004. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zhu, Q.; Xie, Y. Evaluation of various speckle reduction filters on medical ultrasound images. In Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2013), Osaka, Japan, 3–7 July 2013; pp. 1148–1151. [Google Scholar]
- Tasnim, T.; Shuvo, M.M.H.; Hasan, S. Study of speckle noise reduction from ultrasound B-mode images using different filtering techniques. In Proceedings of the 4th International Conference on Advances in Electrical Engineering (ICAEE), Dhaka, Bangladesh, 28–30 September 2017; pp. 229–234. [Google Scholar]
- Neves, L.C.; Zimbico, A.J.; Maia, J.M.; Amorin, A.A.; Schneider, F.; Costa, E.T. Implementation of Eigenspace Beamformer combined with Generalized Sidelobe Canceler and Filters for Generating Plane Wave Ultrasound Image. In Proceedings of the 2021 IEEE UFFC Latin America Ultrasonics Symposium (LAUS), Gainesville, FL, USA, 4–5 October 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.; Wang, Y.; Li, W.; Yu, D. Eigenspace-based generalized sidelobe canceler beamforming applied to medical ultrasound imaging. Sensors 2016, 16, 1192. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.; Li, M.; Abbasi, Q.H.; Imran, M.A. A Fast Blocking Matrix Generating Algorithm for Generalized Sidelobe Canceller Beamformer in High Speed Rail Like Scenario. IEEE Sens. J. 2021, 21, 15775–15783. [Google Scholar] [CrossRef]
- Kuan, D.; Sawchuk, A.; Strand, T.; Chavel, P. Adaptive restoration of images with speckle. IEEE Trans. Acous. Speech Signal Process 1987, 35, 373–383. [Google Scholar] [CrossRef]
- Lee, J.S. Speckle suppression and analysis for synthetic aperture radar images. Opt. Eng. 1986, 25, 636. [Google Scholar] [CrossRef]
- Sivakumar, R.; Gayathri, M.K.; Nedumaran, D. Speckle filtering of ultrasound B-scan images—A comparative study between spatial and diffusion filters. In Proceedings of the IEEE Conference on Open Systems, Kuala Lumpur, Malaysia, 5–8 December 2010; pp. 80–85. [Google Scholar]
- Lopes, A.; Touzi, R.; Nezry, E. Adaptive Speckle Filters and Scene Heterogeneity. IEEE Trans. Geosci. Remote Sens. 1990, 28, 992–1000. [Google Scholar] [CrossRef]
- Cao, H.; Yu, X.; Zhang, J. A new algorithm fusing the fractal interpolation and the enhanced lee filter and its application to the SAR image’s denoising. In Proceedings of the 2008 7th World Congress on Intelligent Control and Automation, Chongqing, China, 25–27 June 2008; pp. 6778–6782. [Google Scholar]
- Liebgott, H.; Rodriguez-Molares, A.; Cervenansky, F.; Jensen, J.; Bernard, O. Plane-Wave Imaging Challenge in Medical Ultrasound. In Proceedings of the IEEE International Ultrasonics Symposium, Tours, France, 18–21 September 2016; pp. 1–4. [Google Scholar]
- Jensen, J.A. Field: A program for simulating ultrasound systems. In Proceedings of the 10th Nordic-Baltic Conference on Biomedical Imaging, Tampere, Finland, 9–13 June 1996; Volume 34, pp. 351–353. [Google Scholar]
- Rodriguez-Morales, A.; Rindal, O.; Bernard, O.; Nair, A.; Bell, M.; Liebgott, H.; Austeng, A.; Lovstakken, L. The Ultrasound Toolbox. In Proceedings of the 17 IEEE International Ultrasonics Symposium (IUS), Washington, DC, USA, 6–9 September 2017; pp. 1–4. [Google Scholar]
- Neves, L.C.; Zimbico, A.J.; Maia, J.M.; Gomes, D.F.; Amorin, A.A.; Schneider, F.; Costa, E.T. Adaptive beamformer with generalized sidelobe canceler for plane wave ultrasound image. In Proceedings of the XII Symposium on Biomedical Engineering—IX Symposium on Instrumentation and Medical Images, Uberlândia, Brazil, 15 August 2019; pp. 1–3. [Google Scholar]
- Zhao, J.; Wang, Y.; Yu, J.; Guo, W.; Li, T.; Zheng, Y.P. Subarray coherence based postfilter for eigenspace based minimum variance beamformer in ultrasound planewave imaging. Ultrasonics 2016, 65, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.C.; Chiang, C.H.; Li, M.L. Hyper-beam Coherent Plane Wave Compounding for Improving Localization Accuracy of Ultrasound Localization Microscopy. In Proceedings of the IEEE International Ultrasonics Symposium (IUS), Montreal, QC, Canada, 3–8 September 2023; pp. 1–3. [Google Scholar] [CrossRef]
- van Sloun, R.J.G.; Solomon, O.; Bruce, M.; Khaing, Z.Z.; Wijkstra, H.; Eldar, Y.C.; Mischi, M. Super-resolution ultrasound localization microscopy through deep learning. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 40, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Heiles, B.; Correia, M.; Hingot, V.; Pernot, M.; Provost, J.; Tanter, M.; Couture, O. Ultrafast 3D Ultrasound Localization Microscopy Using a 32 × 32 Matrix Array. IEEE Trans. Med. Imaging 2019, 38, 2005–2015. [Google Scholar] [CrossRef] [PubMed]
FWHM (mm)—FIELD II | ||||||
---|---|---|---|---|---|---|
Beamformer | Axial | Lateral | ||||
F1 | F2 | F3 | F1 | F2 | F3 | |
DAS | 0.28 | 0.25 | 0.29 | 0.73 | 0.66 | 0.79 |
GSC | 0.30 | 0.32 | 0.35 | 0.34 | 0.34 | 0.41 |
EGSC | 0.27 | 0.28 | 0.30 | 0.33 | 0.34 | 0.45 |
EGSCL | 0.27 | 0.26 | 0.28 | 0.32 | 0.29 | 0.41 |
EGSCLe | 0.27 | 0.24 | 0.24 | 0.26 | 0.22 | 0.32 |
EGSCK | 0.25 | 0.22 | 0.25 | 0.30 | 0.23 | 0.28 |
EGSCKe | 0.26 | 0.22 | 0.24 | 0.23 | 0.20 | 0.30 |
EGSCW | 0.25 | 0.27 | 0.31 | 0.23 | 0.23 | 0.34 |
EGSCWe | 0.26 | 0.25 | 0.31 | 0.24 | 0.22 | 0.34 |
CR (dB)—FIELD II | |||
---|---|---|---|
Beamformer | CR1 | CR2 | CR3 |
DAS | 29.32 | 30.38 | 30.92 |
GSC | 30.38 | 32.45 | 35.06 |
EGSC | 30.16 | 32.94 | 35.39 |
EGSCL | 30.00 | 32.70 | 34.99 |
EGSCLe | 24.26 | 30.10 | 32.60 |
EGSCK | 14.32 | 26.75 | 31.47 |
EGSCKe | 23.50 | 33.26 | 37.18 |
EGSCW | 39.65 | 55.11 | 59.14 |
EGSCWe | 40.69 | 56.34 | 60.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neves, L.C.; Ribas, F.M.; Maia, J.M.; Zimbico, A.J.; Assef, A.A.; Costa, E.T. Improving Ultrasound B-Mode Image Quality with Coherent Plane-Wave Compounding Using Adaptive Beamformers Based on Minimum Variance. Sensors 2025, 25, 1306. https://doi.org/10.3390/s25051306
Neves LC, Ribas FM, Maia JM, Zimbico AJ, Assef AA, Costa ET. Improving Ultrasound B-Mode Image Quality with Coherent Plane-Wave Compounding Using Adaptive Beamformers Based on Minimum Variance. Sensors. 2025; 25(5):1306. https://doi.org/10.3390/s25051306
Chicago/Turabian StyleNeves, Larissa C., Felipe M. Ribas, Joaquim M. Maia, Acacio J. Zimbico, Amauri A. Assef, and Eduardo T. Costa. 2025. "Improving Ultrasound B-Mode Image Quality with Coherent Plane-Wave Compounding Using Adaptive Beamformers Based on Minimum Variance" Sensors 25, no. 5: 1306. https://doi.org/10.3390/s25051306
APA StyleNeves, L. C., Ribas, F. M., Maia, J. M., Zimbico, A. J., Assef, A. A., & Costa, E. T. (2025). Improving Ultrasound B-Mode Image Quality with Coherent Plane-Wave Compounding Using Adaptive Beamformers Based on Minimum Variance. Sensors, 25(5), 1306. https://doi.org/10.3390/s25051306