High Accuracy Location Tracking for a Hemostasis Stent Achieved by the Fusion of Comprehensively Denoised Magnetic and Inertial Measurements
Abstract
1. Introduction
2. Methods
2.1. The Magnetic Locating Approach
2.1.1. The Locating Principle
2.1.2. Causes of Error in the Magnetic Approach
2.2. Inertial Measurements
2.2.1. Measurement of the Orientation
2.2.2. Measurement of the Displacement
2.3. Fusion of the Two Locating Approaches
3. Experiments
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Supplement Equations
Appendix B. Supplement Figures








References
- Holcomb, J.B. Methods for improved hemorrhage control. Crit. Care 2004, 8, S57. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wortham, L. Hemorrhage control in the battlefield: Role of new hemostatic agent. Mil. Med. 2005, 170, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Chun, Y.; Cho, S.K.; Clark, W.C.; Wagner, W.R.; Gu, X.; Tevar, A.D.; McEnaney, R.M.; Tillman, B.W. A retrievable rescue stent graft and radiofrequency positioning for rapid control of noncompressible hemorrhage. J. Trauma Acute Care Surg. 2017, 83, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Go, C.; Fish, L.; Chun, Y.; Alarcon, L.; Tillman, B.W. The anchor point algorithm: A morphometric analysis of anatomic landmarks to guide placement of temporary aortic Rescue stent grafts for noncompressible torso hemorrhage. J. Trauma Acute Care Surg. 2022, 93, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Leszczynski, D. Rapporteur report: Cellular, animal and epidemiological studies of the effects of static magnetic fields relevant to human health. Prog. Biophys. Mol. Biol. 2005, 87, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Attivissimo, F.; Lanzolla, A.M.L. A novel electromagnetic tracking system for surgery navigation. Comput. Assist. Surg. 2018, 23, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Bellizzi, L.; Bevilacqua, G.; Biancalana, V.; Carucci, M.; Cecchi, R.; Chessa, P.; Donniacuo, A.; Mandalà, M.; Stiaccini, L. An innovative eye-tracker: Main features and demonstrative tests. Rev. Sci. Instrum. 2022, 93, 035006. [Google Scholar] [CrossRef] [PubMed]
- Jackson, J.D. Classical Electrodynamics; John Wiley & Sons: Hoboken, NJ, USA, 1999. [Google Scholar]
- Bien, T.; Li, M.; Salah, Z.; Rose, G. Electromagnetic tracking system with reduced distortion using quadratic excitation. Int. J. Comput. Assist. Radiol. Surg. 2014, 9, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Clark, W.W.; Tillman, B.; Chun, Y.J.; Liu, S.; Cho, S.K. A System to Track Stent Location in the Human Body by Fusing Magnetometer and Accelerometer Measurements. Sensors 2023, 23, 4887. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Yang, S.; Ni, Z.; Qian, W.; Gu, C.; Cao, Z. Pedestrian navigation method based on machine learning and gait feature assistance. Sensors 2020, 20, 1530. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Rank, D.; Merdes, M.; Stallkamp, J.; Kazanzides, P. Multisensor data fusion in an integrated tracking system for endoscopic surgery. IEEE Trans. Inf. Technol. Biomed. 2011, 16, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Suh, J.C. The evaluation of the Biot–Savart integral. J. Eng. Math. 2000, 37, 375–395. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Shao, G.; Tang, Y.; Tang, L.; Dai, Q.; Guo, Y.X. A Novel Passive Magnetic Localization Wearable System for Wireless Capsule Endoscopy. IEEE Sens. J. 2019, 19, 3462–3472. [Google Scholar] [CrossRef]
- Ozyagcilar, T. Implementing a Tilt-Compensated eCompass Using Accelerometer and Magnetometer Sensors; Freescale Semiconductor: Austin, TX, USA, 2012. [Google Scholar]
- Marquardt, D.W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
- Song, S.; Qiu, X.; Wang, J.; Meng, M.Q.H. Design and optimization strategy of sensor array layout for magnetic localization system. IEEE Sens. J. 2017, 17, 1849–1857. [Google Scholar] [CrossRef]
- Ozyagcilar, T. Calibrating an eCompass in the Presence of Hard- and Soft-Iron Interference; Freescale Semiconductor: Austin, TX, USA, 2015; Rev. 4.0. [Google Scholar]
- Wang, J.S.; Hsu, Y.L.; Liu, J.N. An inertial-measurement-unit-based pen with a trajectory reconstruction algorithm and its applications. IEEE Trans. Ind. Electron. 2009, 57, 3508–3521. [Google Scholar] [CrossRef]
- Euler Angles. Wikipedia, The Free Encyclopedia. 2025. Available online: https://en.wikipedia.org/wiki/Euler_angles (accessed on 17 October 2025).
- Bang, W.C.; Chang, W.; Kang, K.H.; Choi, E.S.; Potanin, A.; Kim, D.Y. Self-contained spatial input device for wearable computers. In Proceedings of the Seventh IEEE International Symposium on Wearable Computers, 2003. Proceedings, White Plains, NY, USA, 21–23 October 2003; IEEE Computer Society: Piscataway, NJ, USA, 2003; p. 26. [Google Scholar]
- Kenawy, D.M.; Zhang, Y.; Elsisy, M.; Chun, Y.; Garcia-Neuer, M.; Abdel-Rasoul, M.; Clark, W.; Tillman, B. A Magnetic Sensor-equipped Retrievable Aortic Rescue Stent Graft for Noncompressible Torso Hemorrhage. J. Vasc. Surg. 2022, 75, e316–e317. [Google Scholar] [CrossRef]
- IBM. What Are Recurrent Neural Networks? IBM: Armonk, NY, USA, 2020. [Google Scholar]
- Yang, S.; Yu, X.; Zhou, Y. Lstm and gru neural network performance comparison study: Taking yelp review dataset as an example. In Proceedings of the 2020 International Workshop on Electronic Communication and Artificial Intelligence (IWECAI), Shanghai, China, 12–14 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 98–101. [Google Scholar]
- Ghysels, E.; Marcellino, M. Applied Economic Forecasting Using Time Series Methods; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- The MathWorks Inc. Computer Vision Toolbox MatLab; The MathWorks Inc.: Natick, MA, USA, 2023. [Google Scholar]












| Condition | ||
|---|---|---|
| No objects | 0.999 | −0.002 |
| Object 1 added | 0.917 | 0.003 |
| Object 2 added | 0.968 | 0.001 |
| Object 3 added | 0.875 | 0.005 |
| Object 4 added | 0.981 | 0.002 |
| Approaches | RMSE (cm) | Central Error (cm) |
|---|---|---|
| Stationary state magnetic | 0.43 | – |
| Dynamic state magnetic | 0.47 | 0.16 |
| Dynamic state inertial | 1.14 | 1.60 |
| Whole process fusion | 0.53 | 0.03 |
| Index | Disturbance | Approach | Test 1 | Test 2 | Test 3 |
|---|---|---|---|---|---|
| 1 | None | Magnetic | 0.27 | 0.29 | 0.45 |
| 2 | None | Inertial | 1.52 | 1.08 | 0.88 |
| 3 | None | Fusion | 0.30 | 0.85 | 0.56 |
| 4 | G/s | Magnetic | 0.74 | 1.01 | 2.11 |
| 5 | G/s | Fusion | 0.35 | 0.85 | 0.98 |
| 6 | Inertial | 1.33 | 4.14 | 1.41 | |
| 7 | Fusion | 0.34 | 0.70 | 0.56 | |
| 8 | and a | Fusion | 0.65 | 0.99 | 1.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Clark, W.W.; Tillman, B.; Chun, Y.J.; Liu, S.; Kenawy, D. High Accuracy Location Tracking for a Hemostasis Stent Achieved by the Fusion of Comprehensively Denoised Magnetic and Inertial Measurements. Sensors 2025, 25, 6498. https://doi.org/10.3390/s25206498
Zhang Y, Clark WW, Tillman B, Chun YJ, Liu S, Kenawy D. High Accuracy Location Tracking for a Hemostasis Stent Achieved by the Fusion of Comprehensively Denoised Magnetic and Inertial Measurements. Sensors. 2025; 25(20):6498. https://doi.org/10.3390/s25206498
Chicago/Turabian StyleZhang, Yifan, William W. Clark, Bryan Tillman, Young Jae Chun, Stephanie Liu, and Dahlia Kenawy. 2025. "High Accuracy Location Tracking for a Hemostasis Stent Achieved by the Fusion of Comprehensively Denoised Magnetic and Inertial Measurements" Sensors 25, no. 20: 6498. https://doi.org/10.3390/s25206498
APA StyleZhang, Y., Clark, W. W., Tillman, B., Chun, Y. J., Liu, S., & Kenawy, D. (2025). High Accuracy Location Tracking for a Hemostasis Stent Achieved by the Fusion of Comprehensively Denoised Magnetic and Inertial Measurements. Sensors, 25(20), 6498. https://doi.org/10.3390/s25206498

