Characteristics of Lower Limb Dominant and Nondominant Joint Load Changes After Long-Distance Running in Young Male Runners Under OpenSim Environment
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Experimental Protocol
2.3. Joint Contact Force Calculation
2.4. Statistical Analysis
One-Dimensional Statistical Parameter Mapping (SPM1d) Analysis
3. Results
3.1. Bilateral Ankle Contact Force Before and After Running
3.2. Bilateral Knee Contact Force Before and After Running
3.3. Bilateral Hip Contact Force Before and After Running
3.4. Peak Contact Forces at Bilateral Lower Limb Joints Before and After Running
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oja, P.; Memon, A.R.; Titze, S.; Jurakic, D.; Chen, S.-T.; Shrestha, N.; Em, S.; Matolic, T.; Vasankari, T.; Heinonen, A.; et al. Health Benefits of Different Sports: A Systematic Review and Meta-Analysis of Longitudinal and Intervention Studies Including 2.6 Million Adult Participants. Sports Med. Open 2024, 10, 46. [Google Scholar] [CrossRef]
- Kumar, R.; Bogia, P.; Singh, V.; Reddy, T.O. The running gait analysis technology: A comprehensive systematic literature review. J. Orthop. 2025, 62, 75–83. [Google Scholar] [CrossRef]
- Gao, Z.; Fekete, G.; Baker, J.S.; Liang, M.; Xuan, R.; Gu, Y. Effects of running fatigue on lower extremity symmetry among amateur runners: From a biomechanical perspective. Front. Physiol. 2022, 13, 899818. [Google Scholar] [CrossRef] [PubMed]
- Bramah, C.; Preece, S.J.; Gill, N.; Herrington, L. Is There a Pathological Gait Associated with Common Soft Tissue Running Injuries? Am. J. Sports Med. 2018, 46, 3023–3031. [Google Scholar] [CrossRef] [PubMed]
- Zifchock, R.A.; Davis, I.; Hamill, J. Kinetic asymmetry in female runners with and without retrospective tibial stress fractures. J. Biomech. 2006, 39, 2792–2797. [Google Scholar] [CrossRef] [PubMed]
- Newell, K.M.; Emmerik, R.E.A.V.; Mcdonald, P.V. Biomechanical constraints and action theory: Reaction to G.J. van Ingen Schenau (1989). Hum. Mov. Sci. 1989, 8, 403–409. [Google Scholar] [CrossRef]
- Helme, M.; Tee, J.; Emmonds, S.; Low, C. Does lower-limb asymmetry increase injury risk in sport? A systematic review. Phys. Ther. Sport 2021, 49, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Zandbergen, M.A.; Marotta, L.; Bulthuis, R.; Buurke, J.H.; Veltink, P.H.; Reenalda, J. Effects of level running-induced fatigue on running kinematics: A systematic review and meta-analysis. Gait Posture 2023, 99, 60–75. [Google Scholar] [CrossRef]
- Zifchock, R.A.; Davis, I.; Higginson, J.; McCaw, S.; Royer, T. Side-to-side differences in overuse running injury susceptibility: A retrospective study. Hum. Mov. Sci. 2008, 27, 888–902. [Google Scholar] [CrossRef]
- Kim, H.K.; Mei, Q.; Gu, Y.; Mirjalili, A.; Fernandez, J. Reduced joint reaction and muscle forces with barefoot running. Comput. Methods Biomech. Biomed. Eng. 2021, 24, 1263–1273. [Google Scholar] [CrossRef]
- Folland, J.P.; Allen, S.J.; Black, M.I.; Handsaker, J.C.; Forrester, S.E. Running Technique is an Important Component of Running Economy and Performance. Med. Sci. Sports Exerc. 2017, 49, 1412–1423. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, G.; Bender, A.; Dymke, J.; Duda, G.; Damm, P. Standardized Loads Acting in Hip Implants. PLoS ONE 2016, 11, e0155612. [Google Scholar] [CrossRef]
- Jang, J.; Wikstrom, E.A. Ankle joint contact force profiles differ between those with and without chronic ankle instability during walking. Gait Posture 2023, 100, 1–7. [Google Scholar] [CrossRef]
- Liew, B.X.W.; Rügamer, D.; Mei, Q.; Altai, Z.; Zhu, X.; Zhai, X.; Cortes, N. Smooth and accurate predictions of joint contact force time-series in gait using over parameterised deep neural networks. Front. Bioeng. Biotechnol. 2023, 11, 1208711. [Google Scholar] [CrossRef]
- Hu, J.; Li, X.; Zheng, P.; Li, Z.; Zhang, Z.; Zheng, M.; Zou, J.; Fan, T.; Li, G.; Yao, Q.; et al. The impact of neck pain and movement performance on the interarticular compressive force of the cervical spine: A cross-sectional study based on OpenSim. J. Neuroeng. Rehabil. 2025, 22, 26. [Google Scholar] [CrossRef]
- Mei, Q.; Fernandez, J.; Xiang, L.; Gao, Z.; Yu, P.; Baker, J.S.; Gu, Y. Dataset of lower extremity joint angles, moments and forces in distance running. Heliyon 2022, 8, e11517. [Google Scholar] [CrossRef] [PubMed]
- Pataky, T.C. Generalized n-dimensional biomechanical field analysis using statistical parametric mapping. J. Biomech. 2010, 43, 1976–1982. [Google Scholar] [CrossRef]
- Friston, K. Chapter 2—Statistical parametric mapping. In Statistical Parametric Mapping; Friston, K., Ashburner, J., Kiebel, S., Nichols, T., Penny, W., Eds.; Academic Press: London, UK, 2007; pp. 10–31. [Google Scholar]
- Yona, T.; Kamel, N.; Cohen-Eick, G.; Ovadia, I.; Fischer, A. One-dimension statistical parametric mapping in lower limb biomechanical analysis: A systematic scoping review. Gait Posture 2024, 109, 133–146. [Google Scholar] [CrossRef]
- Rajagopal, A.; Dembia, C.L.; DeMers, M.S.; Delp, D.D.; Hicks, J.L.; Delp, S.L. Full-Body Musculoskeletal Model for Muscle-Driven Simulation of Human Gait. IEEE Trans. Biomed. Eng. 2016, 63, 2068–2079. [Google Scholar] [CrossRef]
- Mei, Q.; Gu, Y.; Xiang, L.; Baker, J.S.; Fernandez, J. Foot Pronation Contributes to Altered Lower Extremity Loading After Long Distance Running. Front. Physiol. 2019, 10, 573. [Google Scholar] [CrossRef] [PubMed]
- Arnold, E.M.; Ward, S.R.; Lieber, R.L.; Delp, S.L. A model of the lower limb for analysis of human movement. Ann. Biomed. Eng. 2010, 38, 269–279. [Google Scholar] [CrossRef]
- Novacheck, T.F. The biomechanics of running. Gait Posture 1998, 7, 77–95. [Google Scholar] [CrossRef]
- Biewener, A.A.; Farley, C.T.; Roberts, T.J.; Temaner, M. Muscle mechanical advantage of human walking and running: Implications for energy cost. J. Appl. Physiol. 2004, 97, 2266–2274. [Google Scholar] [CrossRef]
- Pandy, M.G.; Andriacchi, T.P. Muscle and joint function in human locomotion. Annu. Rev. Biomed. Eng. 2010, 12, 401–433. [Google Scholar] [CrossRef]
- Cohen, N.P.; Foster, R.J.; Mow, V.C. Composition and dynamics of articular cartilage: Structure, function, and maintaining healthy state. J. Orthop. Sports Phys. Ther. 1998, 28, 203–215. [Google Scholar] [CrossRef]
- Mansfield, J.C.; Mandalia, V.; Toms, A.; Winlove, C.P.; Brasselet, S. Collagen reorganization in cartilage under strain probed by polarization sensitive second harmonic generation microscopy. J. R. Soc. Interface 2019, 16, 20180611. [Google Scholar] [CrossRef] [PubMed]
- Bertelsen, M.L.; Hulme, A.; Petersen, J.; Brund, R.K.; Sørensen, H.; Finch, C.F.; Parner, E.T.; Nielsen, R.O. A framework for the etiology of running-related injuries. Scand. J. Med. Sci. Sports 2017, 27, 1170–1180. [Google Scholar] [CrossRef] [PubMed]
- Lieber, R.L. Biomechanical response of skeletal muscle to eccentric contractions. J. Sport Health Sci. 2018, 7, 294–309. [Google Scholar] [CrossRef] [PubMed]
- Sanno, M.; Willwacher, S.; Epro, G.; Brüggemann, G.-P. Positive Work Contribution Shifts from Distal to Proximal Joints during a Prolonged Run. Med. Sci. Sports Exerc. 2018, 50, 2507–2517. [Google Scholar] [CrossRef]
- Quan, W.; Ren, F.; Xu, D.; Gusztav, F.; Baker, J.S.; Gu, Y. Effects of Fatigue Running on Joint Mechanics in Female Runners: A Prediction Study Based on a Partial Least Squares Algorithm. Front. Bioeng. Biotechnol. 2021, 9, 746761. [Google Scholar] [CrossRef]
- Carpes, F.P.; Mota, C.B.; Faria, I.E. On the bilateral asymmetry during running and cycling—A review considering leg preference. Phys. Ther. Sport 2010, 11, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Vagenas, G.; Hoshizaki, B. Original Investigations—Functional Asymmetries and Lateral Dominance in the Lower Limbs of Distance Runners. J. Appl. Biomech. 1991, 7, 311–329. [Google Scholar]
- Altai, Z.; Hayford, C.F.; Phillips, A.T.M.; Moran, J.; Zhai, X.; Liew, B.X.W. Lower limb joint loading during high-impact activities: Implication for bone health. JBMR Plus 2024, 8, ziae119. [Google Scholar] [CrossRef]
- Derrick, T.R.; Dereu, D.; McLean, S.P. Impacts and kinematic adjustments during an exhaustive run. Med. Sci. Sports Exerc. 2002, 34, 998–1002. [Google Scholar] [CrossRef]
- Milgrom, C.; Radeva-Petrova, D.R.; Finestone, A.; Nyska, M.; Mendelson, S.; Benjuya, N.; Simkin, A.; Burr, D. The effect of muscle fatigue on in vivo tibial strains. J. Biomech. 2007, 40, 845–850. [Google Scholar] [CrossRef]
- Hohmann, E.; Wörtler, K.; Imhoff, A.B. MR imaging of the hip and knee before and after marathon running. Am. J. Sports Med. 2004, 32, 55–59. [Google Scholar] [CrossRef]
- Hanley, B.; Tucker, C.B. Gait variability and symmetry remain consistent during high-intensity 10,000 m treadmill running. J. Biomech. 2018, 79, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Hoenig, T.; Hamacher, D.; Braumann, K.-M.; Zech, A.; Hollander, K. Analysis of running stability during 5000 m running. Eur. J. Sport Sci. 2019, 19, 413–421. [Google Scholar] [CrossRef] [PubMed]
Variables | Pre-Long-Distance Running | Post-Long-Distance Running | Time × Side Interaction | |||
---|---|---|---|---|---|---|
Joint Contact Force | Non-Dominant | Dominant | Non-Dominant | Dominant | p-Value (η2) | |
Ankle | Anterior–Posterior | 0.49 ± 0.64 | 0.83 ± 0.92 # | 0.64 ± 0.92 | 1.16 ± 1.14 # | 0.119 (0.12) |
Superior–Inferior | 3.05 ± 1.28 | 3.22 ± 1.47 | 3.94 ± 1.79 * | 4.23 ± 1.87 * | 0.086 (0.15) | |
Medial–Lateral | 0.22 ± 0.09 | 0.20 ± 0.05 | 0.26 ± 0.09 * | 0.21 ± 0.06 | 0.137 (0.11) | |
Knee | Anterior–Posterior | 0.44 ± 0.12 | 0.43 ± 0.16 | 0.45 ± 0.12 | 0.54 ± 0.17 | 0.808 (0.00) |
Superior–Inferior | 8.02 ± 1.90 | 7.93 ± 1.58 | 8.35 ± 1.31 * | 8.81 ± 1.34 * | 0.819 (0.00) | |
Medial–Lateral | 0.83 ± 0.47 | 1.56 ± 0.66 # | 0.78 ± 0.35 | 1.69 ± 0.48 # | 0.000 (0.66) † | |
Hip | Anterior–Posterior | 1.23 ± 0.17 | 1.06 ± 0.21 # | 1.38 ± 0.18 * | 1.26 ± 0.15 *# | 0.016 (0.27) † |
Superior–Inferior | 3.59 ± 0.56 | 3.84 ± 0.56 # | 3.75 ± 0.33 * | 4.01 ± 0.49 *# | 0.038 (0.21) † | |
Medial–Lateral | 0.84 ± 0.16 | 0.66 ± 0.18 # | 1.14 ± 0.29 * | 0.85 ± 0.19 *# | 0.000 (0.69) † |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Mao, L. Characteristics of Lower Limb Dominant and Nondominant Joint Load Changes After Long-Distance Running in Young Male Runners Under OpenSim Environment. Sensors 2025, 25, 6301. https://doi.org/10.3390/s25206301
Li X, Mao L. Characteristics of Lower Limb Dominant and Nondominant Joint Load Changes After Long-Distance Running in Young Male Runners Under OpenSim Environment. Sensors. 2025; 25(20):6301. https://doi.org/10.3390/s25206301
Chicago/Turabian StyleLi, Xiaocan, and Lijuan Mao. 2025. "Characteristics of Lower Limb Dominant and Nondominant Joint Load Changes After Long-Distance Running in Young Male Runners Under OpenSim Environment" Sensors 25, no. 20: 6301. https://doi.org/10.3390/s25206301
APA StyleLi, X., & Mao, L. (2025). Characteristics of Lower Limb Dominant and Nondominant Joint Load Changes After Long-Distance Running in Young Male Runners Under OpenSim Environment. Sensors, 25(20), 6301. https://doi.org/10.3390/s25206301