Polarization-Interference Jones Matrix Sensors of Layer-by-Layer Scanning of Polycrystalline Dehydrated Blood Films. Fundamental and Applied Aspects
Abstract
1. Introduction
- The specified vector parametric approach does not provide the possibility of implementing a direct Fourier reconstruction of layer-by-layer distributions of complex amplitudes of the scattered laser field.
- Adequate analytical Jones matrix formalism for the direct description of the processes of formation of polarization structure of amplitude-phase coherent object fields of polycrystalline blood films.
- Application of digital Fourier reconstruction and layer-by-layer phase scanning of Jones matrix images of complex amplitudes with subsequent reconstruction of distributions of linear and circular birefringence-dichroism of blood film samples.
2. Basic Equations and Theoretical Remarks
- complex interference registration and polarization filtering of the object field of blood facies;
- digital Fourier reconstruction of the amplitude-phase structure of the object field;
- step-by-step phase scanning of distributions of complex amplitudes;
- algorithmic reconstruction of Jones matrix theziograms of “birefringence-dichroism” in a set of phase planes.
3. Three-Dimensional Jones Matrix Scanning Method
- Two states of linear polarization are sequentially formed in the “irradiating” () and “reference” () parallel laser beams— and .
- For each of the polarization states ( and ), two partial interference patterns are recorded through the polarizer–analyzer with the transmission plane orientation at angles .
- For each partial interference distribution, we perform a two-dimensional discrete Fourier transform [10,12]:Digital Fourier transforms (16) for determining the set of Jones matrix theziograms can be rewritten in the following form
- The digital Fourier transforms (relations (16)–(18)) results are used to obtain complex amplitude distributions according to the following algorithms:
- Using stepwise () phase () reconstructed complex amplitudes (relations (19), (20)) scanning and using algorithms (13), (14) we obtain Jones matrix theziograms for differently scattered components of the BF object field.
4. Experimental Results and Discussion
4.1. Objects of Investigations
- blood plasma;
- shaped elements.
- edge (polycrystalline albumin layer with linear birefringence and dichroism, ;
- transitional (outer and inner layers of optically isotropic cubic crystals of the Na–Cl salt, intermediate globulin layer with circular birefringence and dichroism, ~25 μm–30 μm);
- the central (outer layer of cubic crystals of salt Na–Cl, ~).
4.2. The Experimental Setup
4.3. Jones Matrix Theziography of Phase Anisotropy of Polycrystalline Blood Films
- coordinate distributions ( and ) of integral theziograms and —fragments (1) and (2);
- histograms of probability distributions of and integral values of linear and circular birefringence of polycrystalline architectonics—fragments (3) and (4);
- coordinate distributions () of reconstructed (ratios (13), (14), (17), (19), and (20)) layer-by-layer theziograms (fragments (5), (9), and (13)) and (fragments (6), (10), and (14) in different phase sections (, fragments (5) and (6)), , (fragments (9) and (10)), , fragments (13) and (14));
- histograms and of layer-by-layer distributions of linear and circular birefringence values of polycrystalline architectonics in different phase planes in different phase sections (, fragments (7) and (8)), , fragments (11) and (12)), , fragments (15) and (16)).
- individual structure of algorithmically reconstructed integral and layer-by-layer theziograms of linear and circular birefringence of optically anisotropic architectonics—fragments (1), (3) and (2), and (4);
- dependence of the average level and the magnitude of the range of change in fluctuations of random values of phase anisotropy parameters on the magnitude of the phase parameter in the reconstructed object field of complex amplitudes—fragments (5), (7), (9), (11), (13), and (15) and (6), (8), (10), (12), (14), and (16);
- the tendency to decrease the magnitude of fluctuations of random values of linear and circular birefringence in the phase planes ) of the field of complex amplitudes with smaller values of the scanning parameter (relationships (19) and (20))—fragments (5), (9), and (13) and (6), (10), and (14).
- individual and different Gaussian () statistics of holographically reproduced BF theziograms and ;
- the third and fourth orders of statistical moments were the most sensitive to changes in the topographic structure of BF phase anisotropy theziograms;
- twofold range of phase change (for different conditions of light scattering in the BF volume) of and values.
4.4. Jones Matrix Theziography of Amplitude Anisotropy of Polycrystalline Blood Films
- difference from zero (for all phase facies depths) values of all central statistical moment’s ;
- dependence of the magnitude of statistical parameters from the phase scan depth;
- the most sensitive markers for changes in amplitude anisotropy theziograms are 3rd and 4th orders statistical moments ;
- as the phase scanning parameter value increases (approaching single scattering conditions), the statistical parameters values increase to 85%, and increase by 60–80%.
5. Diagnostic Capabilities of Jones Matrix Theziography of Polycrystalline Blood Films
5.1. Jones Matrix Theziograms of BF Phase and Amplitude Anisotropy
- polarization-interference mapping (Figure 2) of object fields of the set of samples of blood facies of group 1, group 2 and group 3;
- calculation (ratios (7), (8)) of the integral elements of the Jones matrix and the matrix operator of “single” (phase plane ) scattering;
- reconstruction of integral and layer-by-layer theziograms of the BF phase and amplitude anisotropy;
- statistical analysis (ratios (21)) of theziograms and determination of the most sensitive parameters (markers) and to pathological changes in the BF optically anisotropic architecture;
5.1.1. Phase Anisotropy Theziograms and
- for all phase depths, the central first–fourth-order statistical moments are non-zero- the third and fourth order statistical moments are the most sensitive markers (especially in the phase plane ) to changes in BF birefringence;
- for theziograms , the differences between the values of BF control and experimental groups diagnostic markers are 30–40%;
- for theziograms , the differences between the values of diagnostic markers increase and reach 45–55%.
5.1.2. Amplitude Anisotropy Theziograms and
- difference all first–fourth-order statistical moment values from zero dependence of statistical distributions on the value of the phase scanning parameter of BF polycrystalline architectonics;
- the most sensitive diagnostic markers are third- and fourth-order statistical moments ;
- for linear dichroism theziograms, the differences between the diagnostic marker’s values of the control and experimental BF samples groups are 25–30%;
- for circular dichroism theziograms, the differences between the diagnostic marker’s values increase and reach 35–45%.
5.2. Information Analysis of the Diagnostic Efficiency of Matrix Polarization-Interference Methods
- Sensitivity ()—is the proportion of true positive results () of the diagnostic method among all samples in the experimental group 2 (); —false negative results
- Specificity ()—is the proportion of true negative results () of the method among all samples in the control group 1 (); —false positive results
- Accuracy ()—is the proportion of correct results () of the test among all samples ()
5.3. Comparative Information Analysis of Jones Matrix Theziography and Mueller Matrix Tomography Data
- Jones matrix theziography (stage 1):
- linear birefringence —good level 88.5% ();
- circular birefringence —very good level 90.4% ();
- linear dichroism —good level 82.7% ();
- circular dichroism —good level 88.5% ().
- Mueller matrix tomography (stage 1)—unsatisfactory accuracy for tomograms of linear and circular birefringence and dichroism.
- Jones matrix theziography (stage 2):
- linear birefringence —very good level 94.2% ();
- circular birefringence —excellent level 96.2% ();
- linear dichroism —very good level 92.3% ();
- circular dichroism —very good level 94.2% ().
- Mueller matrix tomography (stage 2):
- linear birefringence —good level 86.5% ();
- circular birefringence —good level 88.2% ();
- linear and circular dichroism —unsatisfactory level ().
- Jones matrix theziography (stages 2 and 3):
- linear birefringence —very good level 92.3% ();
- circular birefringence —very good level 94.2% ();
- linear dichroism —very good level 90.4% ();
- circular dichroism —very good level 92.3% ().
- Mueller matrix diffuse tomography (stages 2 and 3):
- linear birefringence —good level 82.7% ();
- circular birefringence —good level 84.6% ();
- linear and circular dichroism —unsatisfactory level ().
6. Prospects for Further Research
- Modernization of the algorithmic description of the processes of formation of object fields of complex amplitudes by using the logarithmic decomposition [62,63,64,65] of the Jones matrix on the basis of differential matrices of the first (single scattering) and second (diffuse component) components. This will ensure the possibility of almost complete elimination of the influence of the depolarized background and will maximally increase the sensitivity, specificity, and accuracy of differential diagnostics cancer stages.
- The developed technique of polarization-interference Jones matrix differential theziography of blood facies will be tested in diagnostics of various benign and malignant pathologies of the thyroid gland—nodular goiter, autoimmune thyroiditis, and papillary cancer of stages 1–4.
- Diagnostically relevant relationships between Jones matrix theziograms and the features of the polycrystalline architectonics of the facies of other types of biological fluids—saliva (laryngeal cancer), bile (cholecystitis, cholelithiasis), urine (albuminuria), and synovial fluid (joint inflammation) will be determined and studied.
- In order to increase the reliability of the data obtained using the polarization-interference Jones matrix theziography method, additional diagnostic markers will be developed within the framework of correlation (statistical moments that characterize the distribution of autocorrelation functions), wavelet (distribution of the amplitudes of the wavelet coefficients of optical anisotropy maps), and fractal (spectra of singularities of the distributions of optical anisotropy parameters) analysis.
7. Conclusions
- high accuracy of early diagnostics (stage 1: and ) of papillary cancer at its asymptomatic stage;
- excellent detection rate of stage 2 papillary cancer: and ) of cancer diagnostics
- very good accuracy ( and ) of differentiation of papillary thyroid cancer stages.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hunter, R. Foundations of Colloid Science; Oxford University Press: New York, 2004; p. 806. [Google Scholar]
- Chen, X.; Chen, P.G.; Ouazzani, J.; Liu, Q. Numerical simulations of sessile droplet evaporating on heated substrate. Eur. Phys. J. Spec. Top. 2017, 226, 1325–1335. [Google Scholar] [CrossRef]
- Dash, S.; Garimella, S.V. Droplet evaporation on heated hydrophobic and superhydrophobic surfaces. Phys. Rev. E 2014, 89, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Gleason, K.; Putnam, S.A. Microdroplet evaporation with a forced pinned contact line. Langmuir 2014, 30, 10548–10555. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Larson, R.G. Evaporation of a sessile droplet on a substrate. J. Phys. Chem. B 2020, 106, 1334–1344. [Google Scholar] [CrossRef]
- Serra, J. Image Analysis and Mathematical Morphology; Academic Press: New York, NY, USA, 1988; 411p. [Google Scholar]
- Shirvaikar, M.; Trivedi, M. Developing texture-based image clutter measures for object detection. Opt. Eng. 1992, 31, 2628–2639. [Google Scholar] [CrossRef]
- Thiele, U. Patterned deposition at moving contact lines. Adv. Colloid. Interface Sci. 2014, 206, 399–413. [Google Scholar] [CrossRef] [PubMed]
- Sabarth, E.; Williams, H.N. Sensitive Crystallization Process as Demonstration of Formative Forces in the Blood, 2nd ed.; Anthroposophic Press: Spring Valley, NY, USA, 1975. [Google Scholar]
- Kuczlowski, J.; Zaorski, P.; Betlejewski, A. Crystallization test in patients with head and neck neoplasms. Otolaryngol. Pol. 1995, 49 (Suppl. S20), 121–124. [Google Scholar]
- Angelsky, O.V.; Ushenko, A.G.; Ushenko, Y.A.; Pishak, V.P. Statistical and fractal structure of biological tissue Mueller matrix images. In Optical Correlation Techniques and Applications; SPIE Publications: Bellingham, WA, USA, 2007; pp. 213–265. [Google Scholar]
- Ushenko, A.G.; Angelsky, P.O.; Sidor, M.; Marchuk, Y.F.; Andreychuk, D.R. Spatial-frequency selection of complex degree of coherence of laser images of blood plasma in diagnostics and differentiation of pathological states of human organism. Appl. Opt. 2014, 53, B172–B180. [Google Scholar] [CrossRef]
- Garazdyuk, M.S.; Bachinskyi, V.T.; Vanchulyak, O.Y.; Ushenko, A.G.; Dubolazov, O.V.; Gorsky, M.P. Polarization-phase images of liquor polycrystalline films in determining time of death. Appl. Opt. 2016, 55, B67–B71. [Google Scholar] [CrossRef] [PubMed]
- Ushenko, V.A.; Pavlyukovich, N.D.; Trifonyuk, L. Spatial-Frequency Azimuthally stable Cartography of Biological Polycrystalline Networks. Int. J. Opt. 2013, 7, 683174. [Google Scholar] [CrossRef]
- Dubolazov, A.V.; Pashkovskaya, N.V.; Ushenko, Y.A.; Marchuk, Y.F.; Ushenko, V.A.; Novakovskaya, O.Y. Birefringence images of polycrystalline films of human urine in early diagnostics of kidney pathology. Appl. Opt. 2016, 55, B85–B90. [Google Scholar] [CrossRef]
- Ushenko, A.G.; Pashkovskaya, N.V.; Dubolazov, O.V.; Ushenko, Y.; Marchuk, Y.; Ushenko, V. Mueller Matrix Images of Polycrystalline Films of Human Biological Fluids. Rom. Rep. Phys. 2015, 67, 1467–1479. [Google Scholar]
- Wang, L.V.; Wu, H.-I. Biomedical Optics. Biomedical Optics: Principles and Imaging; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; 362p. [Google Scholar]
- Ghosh, N. Tissue polarimetry: Concepts, challenges, applications, and outlook. J. Biomed. Opt. 2011, 16, 110801. [Google Scholar] [CrossRef] [PubMed]
- Jacques, S.L. Polarized light imaging of biological tissues. In Handbook of Biomedical Optics; Boas, D., Pitris, C., Ramanujam, N., Eds.; CRC Press: Boca Raton, FL, USA, 2011; pp. 649–669. [Google Scholar]
- Vitkin, A.; Ghosh, N.; de Martino, A. Tissue Polarimetry. In Photonics: Scientific Foundations, Technology and Applications; Andrews, D.L., Ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 239–321. [Google Scholar]
- de Boer, J.F.; Milner, T.E. Review of polarization sensitive optical coherence tomography and Stokes vector determination. J. Biomed. Opt. 2002, 7, 359–371. [Google Scholar] [CrossRef] [PubMed]
- Spandana, K.U.; Mahato, K.K.; Mazumder, N. Polarization-resolved Stokes-Mueller imaging: A review of technology and applications. Lasers Med. Sci. 2019, 34, 1283–1293. [Google Scholar]
- He, Y.; Li, K.; Li, W.; Qiu, Y.; Li, D.; Wang, C.; Tang, Q.; Li, Z. Polarization coherency matrix tomography. J. Biophotonics 2023, 16, e202300093. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Yuan, Z.; Hu, M.; Liang, Y. Zebrafish brain and skull imaging based on polarization-sensitive optical coherence tomography. J. Biophotonics 2022, 15, e202200112. [Google Scholar] [CrossRef]
- Park, J.E.; Xin, Z.; Kwon, D.Y.; Kim, S.W.; Lee, H.; Jung, M.J.; Tang, S.; Ko, T.Y.; Choi, J.H.; Kim, J.H.; et al. Application of Polarization Sensitive-Optical Coherence Tomography to the Assessment of Phase Retardation in Subpleural Cancer in Rabbits. Tissue Eng. Regen. Med. 2021, 18, 61–69. [Google Scholar] [CrossRef]
- Willemse, J.; Gräfe, M.G.O.; Verbraak, F.D.; de Boer, J.F. In Vivo 3D Determination of Peripapillary Scleral and Retinal Layer Architecture Using Polarization-Sensitive Optical Coherence Tomography. Transl. Vis. Sci. Technol. 2020, 9, 21. [Google Scholar] [CrossRef] [PubMed]
- Baumann, B.; Augustin, M.; Lichtenegger, A.; Harper, D.; Muck, M.; Eugui, P.; Wartak, A.; Pircher, M.; Hitzenberger, C. Polarization-sensitive optical coherence tomography imaging of the anterior mouse eye. J. Biomed. Opt. 2018, 23, 086005. [Google Scholar] [CrossRef] [PubMed]
- Hariri, L.P.; Adams, D.C.; Applegate, M.B.; Miller, A.J.; Roop, B.W.; Villiger, M.; Bouma, B.E.; Suter, M.J. Distinguishing Tumor from Associated Fibrosis to Increase Diagnostic Biopsy Yield with Polarization-Sensitive Optical Coherence Tomography. Clin. Cancer Res. 2019, 25, 5242–5249. [Google Scholar] [CrossRef] [PubMed]
- Tao, K.; Sun, K.; Ding, Z.; Ma, Y.; Kuang, H.; Zhao, H.; Lai, T.; Zhou, Y.; Liu, T. Catheter-Based Polarization Sensitive Optical Coherence Tomography Using Similar Mueller Matrix Method. IEEE Trans. Biomed. Eng. 2020, 67, 60–68. [Google Scholar] [CrossRef]
- Ushenko, O.G.; Grytsyuk, M.; Ushenko, V.O.; Bodnar, G.B.; Vanchulyak, O. Differential 3D Mueller-matrix mapping of optically anisotropic depolarizing biological layers. In Proceedings of the Thirteenth International Conference on Correlation Optics, Chernivtsi, Ukraine, 11–15 September 2017; Volume 10612, pp. 395–402. [Google Scholar]
- Padure, A.; Bakun, O.; Mikirin, I.; Dubolazov, O.; Soltys, I.; Olar, O.; Ushenko, Y.; Ushenko, O.; Palii, I.; Kumargazhanova, S. Differential Mueller-matrix mapping of the polycrystalline component of biological tissues of human organs. Inform. Autom. Pomiary Gospod. Ochr. Sr. 2024, 14, 23–27. [Google Scholar] [CrossRef]
- Ushenko, A.; Dubolazov, A.; Zheng, J.; Bakun, O.; Gorsky, M.; Ushenko, Y. Mueller matrix polarization interferometry of optically anisotropic architectonics of biological tissue object fields: The fundamental and applied aspects. Front. Phys. 2023, 11, 1302254. [Google Scholar] [CrossRef]
- Ushenko, A.; Zheng, J.; Gorsky, M.; Dubolazov, A.; Ushenko, Y.; Soltys, I.; Mikirin, I.; Chen, Z.; Wanchuliak, O.; Gordey, I.; et al. 3D digital holographic polarimetry of diffuse optically anisotropic biological tissue object fields. Front. Phys. 2023, 111288935. [Google Scholar] [CrossRef]
- Ushenko, A.; Zheng, J.; Litvinenko, A.; Gorsky, M.; Wanchuliak, O. A Dubolazov 3D digital polarization-holographic wavelet histology in determining the duration of mechanical damage to the myocardium. J. Biophotonics 2024, 17, e202300372. [Google Scholar]
- Ushenko, A.; Dubolazov, A.; Zheng, J.; Litvinenko, A.; Gorsky, M.; Ushenko, Y.; Soltys, I.; Salega, O.; Chen, Z.; Wanchuliak, O. 3D polarization-interference holographic histology for wavelet-based differentiation of the polycrystalline component of biological tissues with different necrotic states. J. Biomed. Opt. 2024, 29, 052920. [Google Scholar] [CrossRef]
- Ushenko, V.; Sdobnov, A.; Syvokorovskaya, A.; Dubolazov, A.; Vanchulyak, O.; Ushenko, A.; Ushenko, Y.; Gorsky, M.; Sidor, M.; Bykov, A.; et al. 3D Mueller-matrix diffusive tomography of polycrystalline blood plasma films for cancer diagnosis. Photonics 2018, 5, 54. [Google Scholar] [CrossRef]
- Lee, H.R.; Lotz, C.; Groeber-Becker, K.; Dembski, S.; Novikova, T. Digital histology with Mueller polarimetry and FastDBSCAN. Appl. Opt. 2022, 61, 9616–9624. [Google Scholar] [CrossRef]
- Kim, M.; Lee, H.R.; Ossikovski, R.; Malfait-Jobart, A.; Lamarque, D.; Novikova, T. Optical diagnosis of gastric tissue biopsies with Mueller microscopy and statistical analysis. J. Eur. Opt. Soc. Rapid Publ. 2022, 18, 10. [Google Scholar] [CrossRef]
- Lee, H.R.; Li, P.; Yoo, T.S.H.; Lotz, C.; Groeber-Becker, F.K.; Dembski, S.; Garcia-Caurel, E.; Ossikovski, R.; Ma, H.; Novikova, T. Digital histology with Mueller microscopy: How to mitigate an impact of tissue cut thickness fluctuations. J. Biomed. Opt. 2019, 24, 076004. [Google Scholar] [CrossRef]
- Li, P.; Lee, H.R.; Chandel, S.; Lotz, C.; Groeber-Becker, F.K.; Dembski, S.; Ossikovski, R.; Ma, H.; Novikova, T. Analysis of tissue microstructure with Mueller microscopy: Logarithmic decomposition and Monte Carlo modeling. J. Biomed. Opt. 2020, 25, 015002. [Google Scholar] [CrossRef]
- Lee, H.R.; Yoo, T.S.H.; Li, P.; Lotz, C.; Groeber-Becker, F.K.; Dembski, S.; Garcia-Caurel, E.; Ossikovski, R.; Novikova, T. Mueller microscopy of anisotropic scattering media: Theory and experiments. Proc. SPIE 2018, 10677, 1067718. [Google Scholar]
- Ma, H.; He, H.; Ramella-Roman, J.C. Mueller matrix microscopy. In Polarized Light in Biomedical Imaging and Sensing; Ramella-Roman, J.C., Novikova, T., Eds.; Springer: Cham, Switzerland, 2023. [Google Scholar]
- Zabolotna, N.I.; Pavlov, S.V.; Ushenko, A.G.; Karachevtsev, A.O.; Savich, V.O.; Sobko, O.V.; Olar, O.V. System of the phase tomography of optically anisotropic polycrystalline films of biological fluids. Proc. SPIE 2014, 9166, 916616. [Google Scholar]
- Angelsky, O.V.; Polyanskii, P.V.; Mokhun, I.I.; Zenkova, C.Y.; Bogatyryova, H.V.; Felde, C.V.; Bachinskiy, V.T.; Boichuk, T.M.; Ushenko, A.G. Optical measurements: Polarization and coherence of light fields. In Modern Metrology Concerns; INTECH Open Access Publisher: London, UK, 2012. [Google Scholar]
- Eftimie, L.G.; Glogojeanu, R.R.; Tejaswee, A.; Gheorghita, P.; Stanciu, S.G.; Chirila, A.; Stanciu, G.A.; Paul, A.; Hristu, R. Differential diagnosis of thyroid nodule capsules using random forest guided selection of image features. Sci. Rep. 2022, 12, 21636. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.-T.; Ma, B.-Y.; Chen, Y. A narrative review of deep learning in thyroid imaging: Current progress and future prospects. Quant. Imaging Med. Surg. 2024, 14, 2069–2088. [Google Scholar] [CrossRef]
- Tokarz, D.; Cisek, R.; Joseph, A.; Asa, S.L.; Wilson, B.C.; Barzda, V. Characterization of pathological thyroid tissue using polarization-sensitive second harmonic generation microscopy. Lab. Investig. 2020, 100, 1280–1287. [Google Scholar] [CrossRef]
- Cisek, R.; Joseph, A.; Harvey, M.; Tokarz, D. Polarization-Sensitive Second Harmonic Generation Microscopy for Investigations of Diseased Collagenous Tissues. Front. Phys. Sec. Opt. Photonics 2021, 9, 726996. [Google Scholar] [CrossRef]
- Hristu, R.; Eftimie, L.G.; Stanciu, S.G.; Tranca, D.E.; Paun, B.; Sajin, M.; Stanciu, G.A. Quantitative second harmonic generation microscopy for the structural characterization of capsular collagen in thyroid neoplasms. Biomed. Opt. Express. 2018, 9, 3923–3936. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.R. New calculus for the treatment of optical systems. VII. Properties of the N-matrices. J. Opt. Soc. Am. 1948, 38, 671–685. [Google Scholar] [CrossRef]
- Azzam, R.M.A. Propagation of partially depolarized light through anisotropic media with or without depolarization. A differential 4x4 matrix calculus. J. Opt. Soc. Am. 1978, 68, 1756–1767. [Google Scholar] [CrossRef]
- Arteaga, O.; Canillas, A. Analytic inversion of the Mueller-Jones polarization matrices for homogeneous media. Opt. Lett. 2010, 35, 559–561. [Google Scholar] [CrossRef] [PubMed]
- Barakat, R. Exponential versions of the Jones and Mueller–Jones polarization matrices. J. Opt. Soc. Am. A 1996, 13, 158–163. [Google Scholar] [CrossRef]
- Vladimir, Z.; Wang, J.B.; Yan, X.H. Human Blood Plasma Crystal and Molecular Biocolloid Textures—Dismetabolism and Genetic Breaches. Nat. Sci. J. Xiangtan Univ. 2001, 23, 118–127. [Google Scholar]
- Killeen, A.A.; Ossina, N.; McGlennen, R.C.; Minnerath, S.; Borgos, J.; Alexandrov, V.; Sarvazyan, A. Protein self-organization patterns in dried serum reveal changes in B-cell disorders. Mol. Diag. Ther. 2006, 10, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Brutin, D.; Sobac, B.; Loquet, B.; Sampol, J. Pattern formation in drying drops of blood. J. Fluid Mech. 2011, 667, 85–95. [Google Scholar] [CrossRef]
- Marchesini, R.; Bertoni, A.; Andreola, S.; Melloni, E.; Sichirollo, A.E. Extinction and absorption coefficients and scattering phase functions of human tissues in vitro. Appl. Opt. 1989, 28, 2318–2324. [Google Scholar] [CrossRef] [PubMed]
- Edwards, D.K.; Gier, J.T.; Nelson, K.E.; Roddick, R.D. Integrating Sphere for Imperfectly Diffuse Samples. J. Opt. Soc. Am. 1961, 51, 1279–1288. [Google Scholar] [CrossRef]
- Goodman, J.W. Statistical Properties of Laser Speckle Patterns; Springer: Berlin/Heidelberg, Germany, 1975. [Google Scholar] [CrossRef]
- Robinson, S.P. Principles of Forensic Medicine; Greenwich Medical Media: London, UK, 1996. [Google Scholar]
- Cassidy, L.D. Basic concepts of statistical analysis for surgical research. J. Surg. Res. 2005, 128, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Quijano, N.; Arce-Diego, J.L. Mueller matrix differential decomposition. Opt. Lett. 2011, 36, 1942–1944. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Quijano, N.; Arce-Diego, J.L. Depolarizing differential Mueller matrices. Opt. Lett. 2011, 36, 2429–2431. [Google Scholar] [CrossRef]
- Ossikovski, R.; Devlaminck, V. General criterion for the physical realizability of the differential Mueller matrix. Opt. Lett. 2014, 39, 1216–1219. [Google Scholar] [CrossRef] [PubMed]
- Ossikovski, R.; Arteaga, O. Statistical meaning of the differential Mueller matrix of depolarizing homogeneous media. Opt. Lett. 2014, 39, 4470–4473. [Google Scholar] [CrossRef]
Parameters | BF |
---|---|
0.38 ± 0.021 | |
Depolarization degree | 29 ± 0.18 |
0.082 | 0.071 | 0.053 | 0.0048 | |
0.016 | 0.015 | 0.014 | 0.012 | |
0.018 | 0.023 | 0.027 | 0.036 | |
0.028 | 0.037 | 0.042 | 0.046 | |
0.067 | 0.055 | 0.0046 | 0.0045 | |
0.017 | 0.013 | 0.011 | 0.009 | |
0.029 | 0.037 | 0.043 | 0.047 | |
0.038 | 0.046 | 0.064 | 0.073 |
0.24 0.069 | 0.190.064 | 0.07 0.058 | 0.06 0.054 | |
0.28 0.015 | 0.24 0.013 | 0.22 0.013 | 0.18 0.009 | |
0.41 0.022 | 0.56 0.029 | 0.68 0.036 | 0.77 0.039 | |
0.62 0.033 | 0.79 0.041 | 0.92 0.046 | 0.09 0.051 | |
0.095 0.0055 | 0.093 0.0049 | 0.088 0.0046 | 0.082 0.0045 | |
0.21 0.011 | 0.19 0.011 | 0.17 0.009 | 0.15 0.008 | |
0.65 0.034 | 0.81 0.043 | 0.97 0.051 | 0.16 0.066 | |
0.83 0.043 | 0.05 0.054 | 0.31 0.072 | 0.54 0.087 |
Group 1 | Group 2 | Group 1 | Group 2 | |
0.081 | 0.081 | 0.062 | 0.064 | |
0.015 | 0.015 | 0.015 | 0.016 | |
0.017 | 0.021 | 0.025 | 0.027 | |
0.026 | 0.027 | 0.75 ± 0.042 | 0.64 ± 0.036 | |
Group 1 | Group 2 | Group 1 | Group 2 | |
0.046 | 0.049 | 0.049 | 0.046 | |
0.011 | 0.013 | 0.008 | 0.011 | |
0.035 | 0.037 | 0.039 | 0.048 | |
0.044 | 0.048 | 0.82 ± 0.044 | 1.07 ± 0.059 |
Group 1 | Group 2 | Group 1 | Group 2 | |
0.063 | 0.068 | 0.051 | 0.054 | |
0.014 | 0.016 | 0.011 | 0.011 | |
0.023 | 0.023 | 0.036 | 0.036 | |
0.032 | 0.034 | 0.047 | 0.044 | |
Group 1 | Group 2 | Group 1 | Group 2 | |
0.054 | 0.051 | 0.046 | 0.043 | |
0.009 | 0.008 | 0.007 | 0.009 | |
0.038 | 0.045 | 0.068 | 0.067 | |
0.052 | 0.062 | 0.089 | 0.089 |
Diagnostic Accuracy Assessment | |
---|---|
Unsatisfactory | <80 |
Satisfactory | 81–85 |
Good | 86–90 |
Very good | 91–95 |
Excellent | >95 |
Groups | “1” | “2” | “1” | “3” | “2” | “3” |
88.5 | 96.2 | 92.3 | ||||
76.9 | 88.5 | 80.8 | ||||
88.5 | 88.5 | 92.3 | ||||
76.9 | 84.6 | 84.6 | ||||
88.5 | 94.2 | 92.3 | ||||
76.9 | 86.5 | 82.7 | ||||
Groups | “1” | “2” | “1” | “3” | “2” | “3” |
92.3 | 96.2 | 96.2 | ||||
80.8 | 92.3 | 88.5 | ||||
88.5 | 96.2 | 92.3 | ||||
76.9 | 84.6 | 80.8 | ||||
90.4 | 96.2 | 94.2 | ||||
78.8 | 88.5 | 84.6 | ||||
Groups | “1” | “2” | “1” | “3” | “2” | “3” |
84.6 | 96.2 | 88.5 | ||||
69.2 | 76.9 | 65.4 | ||||
80.8 | 88.5 | 92.3 | ||||
73.1 | 76.9 | 61.5 | ||||
82.7 | 92.3 | 90.4 | ||||
71.2 | 76.9 | 63.5 | ||||
Groups | “1” | “2” | “1” | “3” | “2” | “3” |
88.5 | 92.3 | 92.3 | ||||
73.1 | 76.9 | 73.1 | ||||
88.5 | 96.2 | 92.3 | ||||
69.2 | 73.1 | 69.2 | ||||
88.5 | 94.2 | 92.3 | ||||
71.2 | 75 | 71.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ushenko, O.; Ushenko, Y.; Bilookyi, O.; Dubolazov, A.; Gorsky, M.; Soltys, I.; Rohovy, Y.; Bilookyi, V.; Pavlyukovich, N.; Mikirin, I.; et al. Polarization-Interference Jones Matrix Sensors of Layer-by-Layer Scanning of Polycrystalline Dehydrated Blood Films. Fundamental and Applied Aspects. Sensors 2025, 25, 6262. https://doi.org/10.3390/s25206262
Ushenko O, Ushenko Y, Bilookyi O, Dubolazov A, Gorsky M, Soltys I, Rohovy Y, Bilookyi V, Pavlyukovich N, Mikirin I, et al. Polarization-Interference Jones Matrix Sensors of Layer-by-Layer Scanning of Polycrystalline Dehydrated Blood Films. Fundamental and Applied Aspects. Sensors. 2025; 25(20):6262. https://doi.org/10.3390/s25206262
Chicago/Turabian StyleUshenko, Oleksandr, Yuriy Ushenko, Olexander Bilookyi, Alexander Dubolazov, Mykhaylo Gorsky, Iryna Soltys, Yuriy Rohovy, Viacheslav Bilookyi, Natalia Pavlyukovich, Ivan Mikirin, and et al. 2025. "Polarization-Interference Jones Matrix Sensors of Layer-by-Layer Scanning of Polycrystalline Dehydrated Blood Films. Fundamental and Applied Aspects" Sensors 25, no. 20: 6262. https://doi.org/10.3390/s25206262
APA StyleUshenko, O., Ushenko, Y., Bilookyi, O., Dubolazov, A., Gorsky, M., Soltys, I., Rohovy, Y., Bilookyi, V., Pavlyukovich, N., Mikirin, I., Salega, O., Bin, L., & Zheng, J. (2025). Polarization-Interference Jones Matrix Sensors of Layer-by-Layer Scanning of Polycrystalline Dehydrated Blood Films. Fundamental and Applied Aspects. Sensors, 25(20), 6262. https://doi.org/10.3390/s25206262