Parameter-Free Statistical Generator-Based Class Incremental Learning for Multi-User Physical Layer Authentication in the Industrial Internet of Things
Abstract
1. Introduction
- We propose PSG-CIL, a parameter-free CIL framework that can be seamlessly integrated into existing DL-based multi-user PLA models. Compared to existing generative replay-based CIL methods, PSG-CIL generates reliable pseudo-data for old users without any additional parameter training, thereby maintaining authentication performance while significantly reducing computational overhead.
- PSG is capable of augmenting new users’ data simultaneously, mitigating overfitting caused by limited data availability and further improving authentication accuracy.
- We further introduce a dynamic loss weight adjustment mechanism, enabling a more flexible balance between retaining old users’ knowledge and adapting to new users.
- Extensive experiments on real industrial scenario datasets demonstrate the high efficiency and adaptability of PSG-CIL on real IIoT scenarios. For example, in the outer loop route of the Automotive Assembly Plant (AAP) scenario [20] with a Convolutional Neural Network (CNN) as the unified training DL model, when the total number of users reaches seven, retraining from scratch achieves accuracies around 58.57%, while our PSG-CIL framework achieves 70.68%.
2. Related Work
2.1. DL-Based Multi-User PLA
2.2. Class Incremental Learning
3. System Model and Problem Formulation
3.1. System Model
3.2. DL-Based Multi-User PLA
3.2.1. Data Processing
3.2.2. Model Training
3.2.3. Online Authentication
3.3. Problem Formulation
4. The Proposed PSG-CIL Framework
4.1. Parameter-Free Statistical Generator
4.2. Confidence-Based Pseudo-Data Selection
4.3. Multi-User Incremental Learning
Algorithm 1: PSG-CIL: Parameter-Free Statistical Generator-based Class Incremental Learning |
5. Performance Evaluation and Simulation Results
5.1. Real IIoT Scenarios
5.1.1. Inner Loop Route
5.1.2. Outer Loop Route
5.2. Implementation Setting
5.3. Comparison Methods
5.4. Evaluation Metrics
5.5. Performance Analysis
5.6. Ablation Analysis
5.6.1. Comparison Using Different Deep Learning Models
5.6.2. Comparison of Dynamic Adjustment and Fixed
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AAP | Automotive Assembly Plant |
CIL | Class Incremental Learning |
CIR | Channel Impulse Response |
CNN | Convolutional Neural Network |
CSI | Channel State Information |
DL | Deep Learning |
DNN | Deep Neural Network |
FC | Fully Connected (layer) |
GAN | Generative Adversarial Network |
IIoT | Industrial Internet of Things |
KD | Knowledge Distillation |
LPCNN | Lightweight Perturbed Convolutional Neural Network |
LWF | Learning Without Forgetting |
PLA | Physical Layer Authentication |
PN | Pseudo-Noise |
PSG | Parameter-Free Statistical Generator |
PSG-CIL | Parameter-Free Statistical Generator-based Class Incremental Learning Framework |
RFS | Retraining From Scratch |
RFS++ | Retraining From Scratch with Parameter-Free Statistical Generator Augmentation |
ResNet | Residual Network |
VAE | Variational Autoencoder |
References
- Xie, N.; Li, Z.; Tan, H. A survey of physical-layer authentication in wireless communications. IEEE Commun. Surv. Tutor. 2020, 23, 282–310. [Google Scholar]
- Xie, N.; Chen, J.; Huang, L. Physical-layer authentication using multiple channel-based features. IEEE Trans. Inf. Forensics Secur. 2021, 16, 2356–2366. [Google Scholar] [CrossRef]
- Xie, N.; Sha, M.; Hu, T.; Tan, H. Multi-user physical-layer authentication and classification. IEEE Trans. Wirel. Commun. 2023, 22, 6171–6184. [Google Scholar]
- Liao, R.F.; Wen, H.; Wu, J.; Pan, F.; Xu, A.; Jiang, Y.; Xie, F.; Cao, M. Deep-learning-based physical layer authentication for industrial wireless sensor networks. Sensors 2019, 19, 2440. [Google Scholar] [CrossRef]
- Liao, R.F.; Wen, H.; Chen, S.; Xie, F.; Pan, F.; Tang, J.; Song, H. Multiuser physical layer authentication in Internet of Things with data augmentation. IEEE Internet Things J. 2019, 7, 2077–2088. [Google Scholar]
- Meng, R.; Xu, X.; Sun, H.; Zhao, H.; Wang, B.; Han, S.; Zhang, P. Multiuser physical-layer authentication based on latent perturbed neural networks for industrial internet of things. IEEE Internet Things J. 2022, 10, 637–652. [Google Scholar] [CrossRef]
- Jing, T.; Huang, H.; Gao, Q.; Wu, Y.; Huo, Y.; Wang, Y. Multi-User Physical Layer Authentication Based on CSI Using ResNet in Mobile IIoT. IEEE Trans. Inf. Forensics Secur. 2024, 19, 1896–1907. [Google Scholar] [CrossRef]
- Meng, R.; Zhao, H.; Xu, B.; Wang, Y.; Xu, X.; Lv, S.; Tao, X.; Zhang, P. TDGCN-Based Mobile Multiuser Physical-Layer Authentication for EI-Enabled IIoT. arXiv 2024, arXiv:2411.08628. [Google Scholar]
- Chen, Y.; He, H.; Liu, S.; Zhang, Y.; Li, Y.; Xing, B.; Guo, B.; Chen, L. Physical Layer Authentication for Industrial Control Based on Convolutional Denoising Autoencoder. IEEE Internet Things J. 2023, 11, 15633–15641. [Google Scholar] [CrossRef]
- Zhou, D.W.; Wang, Q.W.; Qi, Z.H.; Ye, H.J.; Zhan, D.C.; Liu, Z. Class-incremental learning: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 46, 9851–9873. [Google Scholar] [CrossRef]
- Li, Z.; Hoiem, D. Learning without forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 2935–2947. [Google Scholar] [CrossRef]
- Liu, Y.; Schiele, B.; Sun, Q. Adaptive aggregation networks for class-incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 2544–2553. [Google Scholar]
- Hu, X.; Tang, K.; Miao, C.; Hua, X.S.; Zhang, H. Distilling causal effect of data in class-incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 3957–3966. [Google Scholar]
- Wu, Y.; Chen, Y.; Wang, L.; Ye, Y.; Liu, Z.; Guo, Y.; Zhang, Z.; Fu, Y. Incremental classifier learning with generative adversarial networks. arXiv 2018, arXiv:1802.00853. [Google Scholar] [CrossRef]
- Xiang, Y.; Fu, Y.; Ji, P.; Huang, H. Incremental learning using conditional adversarial networks. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 6619–6628. [Google Scholar]
- Van De Ven, G.M.; Li, Z.; Tolias, A.S. Class-incremental learning with generative classifiers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 3611–3620. [Google Scholar]
- Zhu, F.; Cheng, Z.; Zhang, X.Y.; Liu, C.l. Class-incremental learning via dual augmentation. Adv. Neural Inf. Process. Syst. 2021, 34, 14306–14318. [Google Scholar]
- Zhu, M.; Zhu, Z.; Chen, S.; Chen, C.; Wu, B. Enhanced few-shot class-incremental learning via ensemble models. arXiv 2024, arXiv:2401.07208. [Google Scholar]
- Joshi, R.; Somesula, R.S.; Katkoori, S. Empowering Resource-Constrained IoT Edge Devices: A Hybrid Approach for Edge Data Analysis. In Proceedings of the IFIP International Internet of Things Conference, Denton, TX, USA, 2–3 November 2023; Springer: Berlin/Heidelberg, Germany, 2023; pp. 168–181. [Google Scholar]
- Quimby, J.T.; Candell, R.; Remley, C.A.; Novotny, D.R.; Diener, J.; Papazian, P.B.; Curtin, A.; Koepke, G.H. NIST Channel Sounder Overview and Channel Measurements in Manufacturing Facilities; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2017.
- Kong, H.; Lu, L.; Yu, J.; Chen, Y.; Xu, X.; Lyu, F. Toward multi-user authentication using WiFi signals. IEEE/ACM Trans. Netw. 2023, 31, 2117–2132. [Google Scholar] [CrossRef]
- Zhang, T.; Huo, Y.; Gao, Q.; Ma, L.; Wu, Y.; Li, R. Cooperative physical layer authentication with reputation-inspired collaborator selection. IEEE Internet Things J. 2023, 10, 22165–22181. [Google Scholar] [CrossRef]
- Ai, X.; Yue, Q.; Li, H.; Li, W.; Tu, S.; Rehman, S.U. Physical Layer Authentication Based on Transformer. In Proceedings of the 2023 13th International Conference on Communication and Network Security, Fuzhou, China, 6–8 December 2023; pp. 203–208. [Google Scholar]
- Shen, Z.; Wang, Y.; Wu, J. Physical Layer Security Performance of Multi-User Mixed Radio-Frequency/Free-Space-Optics System Based on Optimal User Interference. Sensors 2023, 23, 6523. [Google Scholar]
- Lu, X.; Shi, Y.; Chen, R.H.; Yang, Z.; An, K.; Chatzinotas, S. Robust Channel-Phase Based Physical-Layer Authentication for Multi-Carriers Transmission. IEEE Internet Things J. 2024, 12, 2918–2929. [Google Scholar] [CrossRef]
- Xia, S.; Tao, X.; Li, N.; Wang, S.; Sui, T.; Wu, H.; Xu, J.; Han, Z. Multiple correlated attributes based physical layer authentication in wireless networks. IEEE Trans. Veh. Technol. 2021, 70, 1673–1687. [Google Scholar] [CrossRef]
- Wu, Y.; Jing, T.; Gao, Q.; Mao, J.; Huo, Y.; Yang, Z. Multi-attribute weighted convolutional attention neural network for multiuser physical layer authentication in IIoT. Ad Hoc Netw. 2024, 163, 103593. [Google Scholar]
- Ju, Y.; Cao, Z.; Chen, Y.; Liu, L.; Pei, Q.; Mumtaz, S.; Dong, M.; Guizani, M. NOMA-assisted secure offloading for vehicular edge computing networks with asynchronous deep reinforcement learning. IEEE Trans. Intell. Transp. Syst. 2023, 25, 2627–2640. [Google Scholar] [CrossRef]
- Ju, Y.; Gao, Z.; Wang, H.; Liu, L.; Pei, Q.; Dong, M.; Mumtaz, S.; Leung, V.C. Energy-efficient cooperative secure communications in mmwave vehicular networks using deep recurrent reinforcement learning. IEEE Trans. Intell. Transp. Syst. 2024, 25, 14460–14475. [Google Scholar] [CrossRef]
- Bonpagna, K.; Castellanos-Paez, S.; Rombourg, R.; Lalanda, P. Leveraging Task-Specific VAEs for Efficient Exemplar Generation in HAR. In Proceedings of the FIP International Internet of Things Conference, Nice, France, 6–8 November 2024. [Google Scholar]
- Yue, X.; Zhang, X.; Chen, Y.; Zhang, C.; Lao, M.; Zhuang, H.; Qian, X.; Li, H. MMAL: Multi-Modal Analytic Learning for Exemplar-Free Audio-Visual Class Incremental Tasks. In Proceedings of the 32nd ACM International Conference on Multimedia, Melbourne, VIC, Australia, 28 October–1 November 2024; pp. 2428–2437. [Google Scholar]
- Meng, R.; Xu, X.; Wang, B.; Sun, H.; Xia, S.; Han, S.; Zhang, P. Physical-Layer Authentication Based on Hierarchical Variational Autoencoder for Industrial Internet of Things. IEEE Internet Things J. 2023, 10, 2528–2544. [Google Scholar] [CrossRef]
- Meng, R.; Xu, X.; Li, G.; Xu, B.; Zhu, F.; Wang, B.; Zhang, P. Multidimensional Fingerprints-Based Multiattacker Detection for 6G Systems. IEEE Internet Things J. 2024, 11, 2665–2683. [Google Scholar] [CrossRef]
- Liao, R.; Wen, H.; Pan, F.; Song, H.; Xu, A.; Jiang, Y. A novel physical layer authentication method with convolutional neural network. In Proceedings of the 2019 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), Dalian, China, 29–31 March 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 231–235. [Google Scholar]
- Pan, F.; Pang, Z.; Wen, H.; Luvisotto, M.; Xiao, M.; Liao, R.F.; Chen, J. Threshold-free physical layer authentication based on machine learning for industrial wireless CPS. IEEE Trans. Ind. Inform. 2019, 15, 6481–6491. [Google Scholar] [CrossRef]
Method | Parameters (M) | Storage Size (MB) |
---|---|---|
RFS | 2.18 | 8.31 |
RFS++ | 2.18 | 8.31 |
LWF | 2.18 | 8.31 |
Fine-tuning | 2.18 | 8.31 |
GAN-based | 3.12 | 11.93 |
PSG-CIL | 2.18 | 8.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, W.; Guo, Y.; Huang, Y.; Chen, Y.; Chen, L. Parameter-Free Statistical Generator-Based Class Incremental Learning for Multi-User Physical Layer Authentication in the Industrial Internet of Things. Sensors 2025, 25, 5952. https://doi.org/10.3390/s25195952
Zhao W, Guo Y, Huang Y, Chen Y, Chen L. Parameter-Free Statistical Generator-Based Class Incremental Learning for Multi-User Physical Layer Authentication in the Industrial Internet of Things. Sensors. 2025; 25(19):5952. https://doi.org/10.3390/s25195952
Chicago/Turabian StyleZhao, Wanbing, Yanru Guo, Yuchen Huang, Yanru Chen, and Liangyin Chen. 2025. "Parameter-Free Statistical Generator-Based Class Incremental Learning for Multi-User Physical Layer Authentication in the Industrial Internet of Things" Sensors 25, no. 19: 5952. https://doi.org/10.3390/s25195952
APA StyleZhao, W., Guo, Y., Huang, Y., Chen, Y., & Chen, L. (2025). Parameter-Free Statistical Generator-Based Class Incremental Learning for Multi-User Physical Layer Authentication in the Industrial Internet of Things. Sensors, 25(19), 5952. https://doi.org/10.3390/s25195952