Improving Data Communication of Enhanced Loran Systems Using 128-ary Polar Codes
Abstract
1. Introduction
- The design of a 128-ary polar code that is compatible with the 128-ary PPM employed in the eLoran system;
- The proposal of an SS demodulation method, based on a correlation receiver, designed for 128-ary PPM to provide the requisite soft information for the 128-ary polar decoder;
- A demonstration that the proposed 128-ary polar code with SS demodulation achieves an error performance gain of approximately 9.3 dB compared to conventional eLoran data encoding (RS codes with conventional demodulation). The origins of this significant gain are analyzed in the subsequent sections.
2. Materials and Methods
2.1. Conventional eLoran Data Communication System
2.2. The Proposed 128-ary Polar Coding Scheme for eLoran
2.2.1. Polar Codes for 128-ary PPM
2.2.2. Proposed Demodulation Method
2.2.3. Construction of 128-ary Polar Code for eLoran
3. Results
3.1. Comparative Error Performance
- Replacing the EPD-MD demodulator with a correlation receiver (HH demodulation) for the RS code yields an initial gain of approximately 1.2 dB. This improvement is attributed to the optimal nature of the correlation receiver compared to the simpler EPD-MD.
- Further incorporating soft demodulation at the first layer (SH demodulation) with the RS code provides an additional gain of approximately 2.1 dB over the HH demodulation. This result highlights the benefit of soft information.
- The most significant contribution, approximately 6.0 dB, arises from replacing the RS code (with SH demodulation) with the proposed 128-ary polar code utilizing SCL decoding. This substantial gain underscores the superior error-correcting capability of polar codes when coupled with an effective soft-decision decoding algorithm like SCL, which inherently benefits from the soft inputs provided by the SS demodulator.
- Specifically, when maintaining the original 56-bit message length, using the 128-ary polar code with SS demodulation allows the number of GRIs required for transmission to be reduced by 2/3 (from 30 to 10 GRIs), while maintaining a similar FER performance.
- Alternatively, for a fixed transmission duration of 30 GRIs, the number of message bits can be increased by 250% (from 56 to 175 bits) while achieving a similar FER to the conventional system.
- These results underscore the potential of the proposed scheme to substantially increase data communication efficiency, enhancing the communication capabilities of the eLoran system.
3.2. Doppler Shift Error Performance Sensitivity
4. Discussion
- 1.
- Enhanced Error Performance: For equivalent message lengths and the number of GRIs, the 128-ary polar code with SS demodulation achieves an approximate 9.3 dB SNR gain over the conventional RS code with EPD-MD demodulation.
- 2.
- Improved Data Communication Efficiency: Alternatively, while maintaining a comparable error performance to the traditional system, the proposed scheme can reduce the required number of GRIs by 2/3 (from 30 to 10 for a 56-bit message) or increase the message bit number by 250% (from 56 to 175 bits within 30 GRIs).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Son, P.W.; Park, S.G.; Han, Y.; Seo, K. eLoran: Resilient Positioning, Navigation, and Timing Infrastructure in Maritime Areas. IEEE Access 2020, 8, 193708–193716. [Google Scholar] [CrossRef]
- Zhang, K.; Wan, G.; Xi, X. Enhanced Loran Skywave Delay Estimation Based on Artificial Neural Network in Low SNR Environment. IET Radar Sonar Navig. 2020, 14, 127–132. [Google Scholar] [CrossRef]
- Zhou, L.; Jiang, Y.; Mu, Z.; Wang, Q.; Hu, X.; He, L. Study of Loran-C One-Hop Sky-Wave Fields at Different Altitudes Above the Ground. Antennas Wirel. Propag. Lett. 2021, 20, 2368–2371. [Google Scholar] [CrossRef]
- Son, P.W.; Park, S.G.; Han, Y.; Seo, K.; Fang, T.H. Demonstration of the Feasibility of the Korean eLoran System as a Resilient PNT in a Testbed. Remote Sens. 2023, 15, 3586. [Google Scholar] [CrossRef]
- EU eLoran Efforts Sharpen While U.S. Requirements Study Continues. Available online: https://insidegnss.com/eu-eloran-efforts-sharpen-while-u-s-requirements-study-continues/ (accessed on 15 December 2024).
- Willigen, D.V.; Offermans, G.W.A.; Helwig, A.W.S. EUROFIX: Definition and current status. In Proceedings of the IEEE 1998 Position Location and Navigation Symposium (Cat. No.98CH36153), Palm Springs, CA, USA, 20–23 April 1996; pp. 101–108. [Google Scholar]
- Lo, S.C.; Peterson, B.B.; Enge, P.K. Loran Data Modulation: A Primer [AESS Tutorial IV]. IEEE Aerosp. Electron. Syst. Mag. 2007, 22, 31–51. [Google Scholar] [CrossRef]
- Li, S.; Wang, Y.; Hua, Y.; Xu, Y. Research of Loran-C data demodulation and decoding technology. Yi Qi Yi Biao Xue Bao/Chin. J. Sci. Instrum. 2012, 33, 1407–1413. [Google Scholar]
- Yuan, J.; Yan, W.; Li, S.; Hua, Y. Demodulation Method for Loran-C at Low SNR Based on Envelope Correlation–Phase Detection. Sensors 2020, 20, 4535. [Google Scholar] [CrossRef] [PubMed]
- Lyu, B.; Hua, Y.; Yuan, J.; Li, S. Application of Ultra Narrow Band Modulation in Enhanced Loran System. Sensors 2021, 21, 4347. [Google Scholar] [CrossRef] [PubMed]
- Reed, I.S.; Solomon, G. Polynomial Codes Over Certain Finite Fields. J. Soc. Ind. Appl. Math. 1960, 8, 300–304. [Google Scholar] [CrossRef]
- Berlekamp, E.R. Algebraic Coding Theory (Revised Edition); World Scientific: Beijing, China, 2015. [Google Scholar]
- Sugiyama, Y.; Kasahara, M.; Hirasawa, S.; Namekawa, T. A method for solving key equation for decoding goppa codes. Inf. Control 1975, 27, 87–99. [Google Scholar] [CrossRef]
- Berlekamp, E.R.; Wlech, L.R. Error Correction for Algebraic Block Codes. US4633470A, 26 September 1984. [Google Scholar]
- Guruswami, V.; Vardy, A. Maximum-Likelihood Decoding of Reed–Solomon Codes is NP-Hard. IEEE Trans. Inf. Theory 2005, 51, 2249–2256. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, J. A Novel Chase Kötter-Vardy Algorithm. IEEE J. Sel. Areas Inf. Theory 2023, 4, 232–244. [Google Scholar] [CrossRef]
- Liang, J.; Yang, L.; Chen, L. Partially Parallel Low-Complexity Chase Decoding of Reed-Solomon Codes. In Proceedings of the 2022 IEEE Globecom Workshops (GC Workshops), Rio de Janeiro, Brazil, 4–8 December 2022; pp. 498–503. [Google Scholar]
- Jiang, J.; Narayanan, K.R. Algebraic Soft-Decision Decoding of Reed-Solomon Codes Using Bit-Level Soft Information. IEEE Trans. Inf. Theory 2008, 54, 3907–3928. [Google Scholar] [CrossRef]
- Arikan, E. Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels. IEEE Trans. Inf. Theory 2009, 55, 3051–3073. [Google Scholar] [CrossRef]
- Bae, J.H.; Abotabl, A.; Lin, H.-P.; Song, K.-B.; Lee, J. An Overview of Channel Coding for 5G NR Cellular Communications. APSIPA Trans. Signal Inf. Process. 2019, 8, e17. [Google Scholar] [CrossRef]
- Mahdavifar, H.; El-Khamy, M.; Lee, J.; Kang, I. Polar Coding for Bit-Interleaved Coded Modulation. IEEE Trans. Veh. Technol. 2016, 65, 3115–3127. [Google Scholar] [CrossRef]
- Farsiabi, A.; Ebrahimzad, H.; Ardakani, M.; Li, C. Fast Successive-Cancellation Decoding of 2 × 2 Kernel Non-Binary Polar Codes. IEEE Trans. Commun. 2025, 73, 1009–1024. [Google Scholar] [CrossRef]
- Cheng, N.; Zhang, R.; Ge, Y.; Shi, W.; Zhang, Q.; Shen, X.S. Encoder and list decoder of Reed-Solomon kernel based polar codes. In Proceedings of the 2016 8th International Conference on Wireless Communications & Signal Processing (WCSP), Yangzhou, China, 13–15 October 2016; pp. 1–6. [Google Scholar]
- Yuan, P.; Steiner, F. Construction and Decoding Algorithms for Polar Codes based on 2 × 2 Non-Binary Kernels. In Proceedings of the 2018 IEEE 10th International Symposium on Turbo Codes & Iterative Information Processing (ISTC), Hong Kong, China, 3–7 December 2018; pp. 1–5. [Google Scholar]
- Niu, K.; Chen, K.; Lin, J.R. Beyond turbo codes: Rate-compatible punctured polar codes. In Proceedings of the 2013 IEEE International Conference on Communications (ICC), Budapest, Hungary, 9–13 June 2013; pp. 3423–3427. [Google Scholar]
- Tal, I.; Vardy, A. List Decoding of Polar Codes. IEEE Trans. Inf. Theory 2015, 61, 2213–2226. [Google Scholar] [CrossRef]
- Tal, I.; Vardy, A. How to Construct Polar Codes. IEEE Trans. Inf. Theory 2013, 59, 6562–6582. [Google Scholar] [CrossRef]
- Dai, J.; Niu, K.; Si, Z.; Lin, J. Evaluation and optimization of Gaussian approximation for polar codes. Proc. Amer. Soc. Inf. Sci. Technol 2016, 51, 1–2. [Google Scholar]
- Bocherer, G.; Prinz, T.; Yuan, P.; Steiner, F. Efficient Polar Code Construction for Higher-Order Modulation. In Proceedings of the 2017 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), San Francisco, CA, USA, 19–22 March 2017; pp. 1–6. [Google Scholar]
- He, G.; Belfiore, J.C.; Land, I.; Yang, G.; Liu, X.; Chen, Y.; Li, R.; Wang, J.; Ge, Y.; Zhang, R.; et al. Beta-Expansion: A Theoretical Framework for Fast and Recursive Construction of Polar Codes. In Proceedings of the GLOBECOM 2017–2017 IEEE Global Communications Conference, San Francisco, CA, USA, 4–8 December 2017; pp. 1–6. [Google Scholar]
- United States Coast Guard. Loran-C User Handbook; Washington Department of Transportation, United States Coast Guard: Washington, DC, USA, 1974.
- Caire, G.; Taricco, G.; Biglieri, E. Bit-Interleaved Coded Modulation. IEEE Trans. Inform. Theory 1998, 44, 927–946. [Google Scholar] [CrossRef]
128-ary Polar Code | RS Code | Binary Polar Code (BICM) | |
---|---|---|---|
Encoding Method | Polar Code | RS Code | Polar Code |
GRI Number | 30 | 30 | 30 |
Message Bit Number | 56 | 56 | 56 |
CRC Bit Number | 14 | 14 | 14 |
Coded Symbol | 128-ary | 128-ary | Binary |
Modulation | 128-ary PPM | 128-ary PPM | BICM+128-ary PPM |
Demodulation | SS/SH | SH/HH/EDP-MD [8] | SS |
Decoding | SCL | BM | SCL |
List size of Decoding | 1/2/4/8 | N/A | 4 |
Number of Frames |
New Scheme | Error Performance Gain at 0.01 FER Level (Compared with RS and EPD-MD) |
---|---|
Correlation receiver | 1.2 dB |
Soft-decision demodulation | 2.1 dB |
128-ary polar code with SDD | 6 dB |
Total | 9.3 dB |
128-ary Polar Code-10GRI | 128-ary Polar Code-175 bits | |
---|---|---|
GRI Number | 10 | 30 |
Message Bit Number | 56 | 175 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, R.; Li, Y.; Qu, D. Improving Data Communication of Enhanced Loran Systems Using 128-ary Polar Codes. Sensors 2025, 25, 4638. https://doi.org/10.3390/s25154638
Jia R, Li Y, Qu D. Improving Data Communication of Enhanced Loran Systems Using 128-ary Polar Codes. Sensors. 2025; 25(15):4638. https://doi.org/10.3390/s25154638
Chicago/Turabian StyleJia, Ruochen, Yunxiao Li, and Daiming Qu. 2025. "Improving Data Communication of Enhanced Loran Systems Using 128-ary Polar Codes" Sensors 25, no. 15: 4638. https://doi.org/10.3390/s25154638
APA StyleJia, R., Li, Y., & Qu, D. (2025). Improving Data Communication of Enhanced Loran Systems Using 128-ary Polar Codes. Sensors, 25(15), 4638. https://doi.org/10.3390/s25154638