Characteristics of Post-Exercise Lower Limb Muscle Tremor Among Speed Skaters
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Physiological Tremor Measurement of Lower Limbs
2.3. Procedures
2.3.1. Sprint Training Session
2.3.2. Endurance Training Session
2.3.3. Frequency Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stastny, P.; Musalek, M.; Roczniok, R.; Cleather, D.; Novak, D.; Vagner, M. Testing Distance Characteristics and Reference Values for Ice-Hockey Straight Sprint Speed and Acceleration. A Systematic Review and Meta-Analyses. Biol. Sport 2023, 40, 899–918. [Google Scholar] [CrossRef] [PubMed]
- Budarick, A.R.; Shell, J.R.; Robbins, S.M.K.; Wu, T.; Renaud, P.J.; Pearsall, D.J. Ice Hockey Skating Sprints: Run to Glide Mechanics of High Calibre Male and Female Athletes. Sports Biomech. 2020, 19, 601–617. [Google Scholar] [CrossRef]
- Skrzat, J.M.; Carp, S.J.; Dai, T.; Lauer, R.; Hiremath, S.V.; Gaeckle, N.; Tucker, C.A. Use of surface electromyography to measure muscle fatigue in patients in an acute care hospital. Phys. Ther. 2020, 100, 897–906. [Google Scholar] [CrossRef]
- Naeem, J.; Hamzaid, N.A.; Islam, M.; Azman, A.W.; Bijak, M. Mechanomyography-based muscle fatigue detection during electrically elicited cycling in patients with spinal cord injury. Med. Biol. Eng. Comput. 2019, 57, 1199–1211. [Google Scholar] [CrossRef]
- Weist, R.; Eils, E.; Rosenbaum, D. The influence of muscle fatigue on electromyogram and plantar pressure patterns as an explanation for the incidence of metatarsal stress fractures. Am. J. Sports Med. 2004, 32, 1893–1898. [Google Scholar] [CrossRef] [PubMed]
- Otálora, S.; Segatto, M.E.V.; Monteiro, M.E.; Múnera, M.; Díaz, C.A.R.; Cifuentes, C.A. Data-driven approach for upper limb fatigue estimation based on wearable sensors. Sensors 2023, 23, 9291. [Google Scholar] [CrossRef] [PubMed]
- Morrison, S.; Colberg, S.R.; Parson, H.K.; Neumann, S.; Handel, R.; Vinik, E.J.; Paulson, J.; Vinik, A.I. Walking-induced fatigue leads to increased falls risk in older adults. J. Am. Med. Dir. Assoc. 2016, 17, 402–409. [Google Scholar] [CrossRef]
- Cifrek, M.; Medved, V.; Tonković, S.; Ostojić, S. Surface EMG based muscle fatigue evaluation in biomechanics. Clin. Biomech. 2009, 24, 327–340. [Google Scholar] [CrossRef]
- Li, N.; Zhou, R.; Krishna, B.; Pradhan, A.; Lee, H.; He, J.; Jiang, N. Non-invasive techniques for muscle fatigue monitoring: A comprehensive survey. ACM Comput. Surv. 2024, 56, 221. [Google Scholar] [CrossRef]
- Dingwell, J.B.; Joubert, J.E.; Diefenthaeler, F.; Trinity, J.D. Changes in muscle activity and kinematics of highly trained cyclists during fatigue. IEEE Trans. Biomed. Eng. 2008, 55, 2666–2674. [Google Scholar] [CrossRef]
- Marco, G.; Alberto, B.; Taian, V. Surface EMG and muscle fatigue: Multi-channel approaches to the study of myoelectric manifestations of muscle fatigue. Physiol. Meas. 2017, 38, R27–R60. [Google Scholar] [CrossRef]
- Arntz, A.; Weber, F.; Handgraaf, M.; Lällä, K.; Korniloff, K.; Murtonen, K.P.; Chichaeva, J.; Kidritsch, A.; Heller, M.; Sakellari, E.; et al. Technologies in home-based digital rehabilitation: Scoping review. JMIR Rehabil. Assist. Technol. 2023, 10, e43615. [Google Scholar] [CrossRef]
- Deuschl, G.; Raethjen, J.; Lindemann, M.; Krack, P. The Pathophysiology of Tremor. Muscle Nerve 2001, 24, 716–735. [Google Scholar] [CrossRef]
- Bureneva, O.; Safyannikov, N. Strain Gauge Measuring System for Subsensory Micromotions Analysis as an Element of a Hybrid Human–Machine Interface. Sensors 2022, 22, 9146. [Google Scholar] [CrossRef]
- Wang, K.; Wu, M.; Sun, Z.; Huang, Q. Spatial Augmented Reality for Expanding the Reach of Individuals with Tremor beyond Their Physical Limits. Sensors 2024, 24, 5405. [Google Scholar] [CrossRef] [PubMed]
- Novak, D.; Tomasek, A.; Lipinska, P.; Stastny, P. The Specificity of Motor Learning Tasks Determines the Kind of Skating Skill Development in Older School-Age Children. Sports 2020, 8, 126. [Google Scholar] [CrossRef] [PubMed]
- Shahtalebi, S.; Atashzar, S.F.; Samotus, O.; Patel, R.V.; Jog, M.S.; Mohammadi, A. PHTNet: Characterization and Deep Mining of Involuntary Pathological Hand Tremor Using Recurrent Neural Network Models. Sci. Rep. 2020, 10, 2195. [Google Scholar] [CrossRef] [PubMed]
- Oranchuk, D.J.; Storey, A.G.; Nelson, A.R.; Cronin, J.B. Scientific Basis for Eccentric Quasi-Isometric Resistance Training: A Narrative Review. J. Strength. Cond. Res. 2019, 33, 2846–2859. [Google Scholar] [CrossRef]
- Gołaś, A.; Pietraszewski, P.; Roczniok, R.; Królikowska, P.; Ornowski, K.; Jabłoński, T.; Kuliś, S.; Zając, A. Neuromuscular Control during the Bench Press Exercise Performed with Free Weights and Pneumatic Loading. Appl. Sci. 2024, 14, 3782. [Google Scholar] [CrossRef]
- Pietraszewski, P.; Gołaś, A.; Matusiński, A.; Mrzygłód, S.; Mostowik, A.; Maszczyk, A. Muscle Activity Asymmetry of the Lower Limbs during Sprinting in Elite Soccer Players. J. Hum. Kinet. 2020, 75, 239–245. [Google Scholar] [CrossRef]
- Taylor, J.L.; Amann, M.; Duchateau, J.; Meeusen, R.; Rice, C.L. Neural Contributions to Muscle Fatigue: From the Brain to the Muscle and Back Again. Med. Sci. Sports Exerc. 2016, 48, 2294–2306. [Google Scholar] [CrossRef] [PubMed]
- Park, W.; Lee, J.; Lee, H.; Hong, G.; Park, H.-Y.; Park, J. Analysis of Physiological Tremors during Different Intensities of Armcurl Exercises Using Wearable Three-Axis Accelerometers in Healthy Young Men: A Pilot Study. Phys. Act. Nutr. 2022, 26, 032–040. [Google Scholar] [CrossRef] [PubMed]
- Halliday, D.M.; Conway, B.A.; Farmer, S.F.; Rosenberg, J.R. Load-Independent Contributions From Motor-Unit Synchronization to Human Physiological Tremor. J. Neurophysiol. 1999, 82, 664–675. [Google Scholar] [CrossRef] [PubMed]
- Mazur-Różycka, J.; Gajewski, J.; Orysiak, J.; Sitkowski, D.; Buśko, K. The Influence of Fatigue on the Characteristics of Physiological Tremor and Hoffmann Reflex in Young Men. Int. J. Environ. Res. Public Health 2023, 20, 3436. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, N.; Sun, M.; Qu, F.; Zhou, X. The Effects of Hand Tremors on the Shooting Performance of Air Pistol Shooters with Different Skill Levels. Sensors 2024, 24, 2438. [Google Scholar] [CrossRef]
- Palmer, S.S. Changes in Finger Tremor during Prolonged Submaximal Contractions. Hum. Mov. Sci. 1991, 10, 677–688. [Google Scholar] [CrossRef]
- De Araújo, A.C.A.; Santos, E.G.D.R.; De Sá, K.S.G.; Furtado, V.K.T.; Santos, F.A.; De Lima, R.C.; Krejcová, L.V.; Santos-Lobato, B.L.; Pinto, G.H.L.; Cabral, A.D.S.; et al. Hand Resting Tremor Assessment of Healthy and Patients with Parkinson’s Disease: An Exploratory Machine Learning Study. Front. Bioeng. Biotechnol. 2020, 8, 778. [Google Scholar] [CrossRef]
- Takanokura, M.; Sakamoto, K. Physiological Tremor of the Upper Limb Segments. Eur. J. Appl. Physiol. 2001, 85, 214–225. [Google Scholar] [CrossRef]
- Gajewski, J.; Sitkowski, D.; Obmiński, Z. Changes in Tremor and Hormonal Responses to High—Intensity Exercise on Kayak Ergometer. Biol. Sport 2006, 23, 237–253. [Google Scholar]
- Tomczak, A.; Gajewski, J.; Mazur-Różycka, J. Changes in physiological tremor Resulting from Sleep Deprivation under Conditions of increasing Fatigue During Prolonged Military Training. Biol. Sport 2014, 31, 303–308. [Google Scholar] [CrossRef]
- Froyd, C.H.; Millet, G.Y.; Noakes, T.D. The development of peripheral fatigue and short-term recovery during self-paced high-intensity exercise. J. Physiol. 2012, 591, 1339–1346. [Google Scholar] [CrossRef]
- Hureau, T.J.; Olivier, N.; Mille, Y.G.; Meste, O.; Blain, G.M. Exercise performance is regulated during repeated sprints to limit the development of peripheral fatigue beyond a critical threshold. Exp. Physiol. 2014, 99, 951–963. [Google Scholar] [CrossRef] [PubMed]
- Gajewski, J.; Mazur-Różycka, J.; Górski, M.; Buśko, K. Reference Values of the Forearm Tremor Power Spectra for Youth Athletes. J. Hum. Kinet. 2023, 86, 133–143. [Google Scholar] [CrossRef]
- McAuley, J.H. Physiological and Pathological Tremors and Rhythmic Central Motor Control. Brain 2000, 123, 1545–1567. [Google Scholar] [CrossRef]
- Marsden, J.F.; Limousin-Dowsey, P.; Ashby, P.; Pollak, P.; Brown, P. Subthalamic Nucleus, Sensorimotor Cortex and Muscle Interrelationships in Parkinson’s Disease. Brain 2001, 124, 378–388. [Google Scholar] [CrossRef] [PubMed]
- Papale, O.; Di Rocco, F.; Festino, E.; Gammino, V.; Cortis, C.; Fusco, A. Do Hand Exercises Influence Physiological Hand Tremor? An Observational Cohort Study on Healthy Young Adults. Appl. Sci. 2024, 14, 4467. [Google Scholar] [CrossRef]
- Vernooij, C.A.; Reynolds, R.F.; Lakie, M. Physiological Tremor Reveals How Thixotropy Adapts Skeletal Muscle for Posture and Movement. R. Soc. Open Sci. 2016, 3, 160065. [Google Scholar] [CrossRef]
- Gajewski, J.; Viitasalo, J.T. Does the Level of Adaptation to a Heavy Physical Effort Influence Fatigue-Induced Changes in Tremor Amplitude? Hum. Mov. Sci. 1994, 13, 211–220. [Google Scholar] [CrossRef]
- Lakie, M.; Campbell, K.S. Muscle Thixotropy—Where Are We Now? J. Appl. Physiol. 2019, 126, 1790–1799. [Google Scholar] [CrossRef]
- Iaizzo, P.A.; Pozos, R.S. Exercise-Induced Amplitude Modification of Physiological Action Tremor of the Ankle. J. Appl. Physiol. 1982, 53, 1164–1170. [Google Scholar] [CrossRef]
- Gajewski, J.; Mazur-Różycka, J.; Łach, P.; Różycki, S.; Żmijewski, P.; Buśko, K.; Michalski, R. Changes of Physiological Tremor Following Maximum Intensity Exercise in Male and Female Young Swimmers. Hum. Mov. 2018, 16, 214–220. [Google Scholar] [CrossRef]
- Andrade, A.O.; Pereira, A.A.; de Almeida, M.F.S.; Cavalheiro, G.L.; Paixão, A.P.S.; Fenelon, S.B.; Dionisio, V.C. Human Tremor: Origins, Detection and Quantification. In Practical Applications in Biomedical Engineering; Andrade, A., Ed.; InTech: Rijeka, Croatia, 2013; ISBN 978-953-51-0924-2. [Google Scholar]
- D’Addona, V.; Evangelista, M.; Viggiano, D. A New Method for Quantitative Tremor Assessment in Sports. Sport-Orthopädie-Sport-Traumatol.-Sports Orthop. Traumatol. 2014, 30, 54–59. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Yang, J.-F.; Hwang, I.-S. Global Effect on Multi-Segment Physiological Tremors Due to Localized Fatiguing Contraction. Eur. J. Appl. Physiol. 2012, 112, 899–910. [Google Scholar] [CrossRef]
- Louis, E.D.; Hafeman, D.; Parvez, F.; Liu, X.; Alcalay, R.N.; Islam, T.; Ahmed, A.; Siddique, A.B.; Patwary, T.I.; Melkonian, S.; et al. Tremor Severity and Age: A Cross-sectional, Population-based Study of 2524 Young and Midlife Normal Adults. Mov. Disord. 2011, 26, 1515–1520. [Google Scholar] [CrossRef] [PubMed]
- Elble, R.J. Essential Tremor Frequency Decreases with Time. Neurology 2000, 55, 1547–1551. [Google Scholar] [CrossRef]
- Morrison, S.; Sosnoff, J.J. The Impact of Localized Fatigue on Contralateral Tremor and Muscle Activity Is Exacerbated by Standing Posture. J. Electromyogr. Kinesiol. 2010, 20, 1211–1218. [Google Scholar] [CrossRef]
Resting Tremor | After Endurance Training | After Sprint Ttraining | ||||
---|---|---|---|---|---|---|
Variable | Left Limb | Right Limb | Left Limb | Right Limb | Left Limb | Right Limb |
L(2_5) | 8.89 ± 0.89 | 8.60 ± 1.03 | 9.49 ± 0.86 | 9.47 ± 0.91 | 9.52 ± 1.00 | 9.60 ± 0.87 |
L(9_14) | 4.86 ± 1.02 | 4.40 ± 0.99 | 5.38 ± 1.01 | 5.86 ± 1.61 | 5.75 ± 1.50 | 5.55 ± 1.07 |
F(2_5) [Hz] | 3.19 ± 0.16 | 3.19 ± 0.16 | 3.28 ± 0.15 | 3.33 ± 0.23 | 3.26 ± 0.19 | 3.33 ± 0.23 |
F(9_14) [Hz] | 11.34 ± 0.28 | 11.39 ± 0.31 | 11.22 ± 0.38 | 11.25 ± 0.41 | 11.15 ± 0.28 | 11.18 ± 0.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuliś, S.; Pietraszewski, P.; Callegari, B. Characteristics of Post-Exercise Lower Limb Muscle Tremor Among Speed Skaters. Sensors 2025, 25, 4301. https://doi.org/10.3390/s25144301
Kuliś S, Pietraszewski P, Callegari B. Characteristics of Post-Exercise Lower Limb Muscle Tremor Among Speed Skaters. Sensors. 2025; 25(14):4301. https://doi.org/10.3390/s25144301
Chicago/Turabian StyleKuliś, Szymon, Przemysław Pietraszewski, and Bianca Callegari. 2025. "Characteristics of Post-Exercise Lower Limb Muscle Tremor Among Speed Skaters" Sensors 25, no. 14: 4301. https://doi.org/10.3390/s25144301
APA StyleKuliś, S., Pietraszewski, P., & Callegari, B. (2025). Characteristics of Post-Exercise Lower Limb Muscle Tremor Among Speed Skaters. Sensors, 25(14), 4301. https://doi.org/10.3390/s25144301