Evaluation of Confusion Behaviors in SEI Models
Abstract
1. Introduction
2. Dataset Generation
2.1. Hardware
2.2. Dataset Contents
2.3. SNR Variation
2.4. Comparison to SEI Literature
3. ML Models
3.1. Model Architectures
3.2. Model Evaluation
4. Results and Analysis
4.1. Baseline Performance
4.2. Failure Analysis
4.2.1. Failure Analysis: Data Quantity
4.2.2. Failure Analysis: Rates of Change in Mis-Classifications
4.3. Ensemble Analysis
4.4. Entropy Analysis
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rehman, S.U.; Sowerby, K.W.; Alam, S.; Ardekani, I. Radio Frequency Fingerprinting and its Challenges. In Proceedings of the 2014 IEEE Conference on Communications and Network Security, San Francisco, CA, USA, 29–31 October 2014; pp. 496–497. [Google Scholar] [CrossRef]
- Polak, A.C.; Dolatshahi, S.; Goeckel, D.L. Identifying Wireless Users via Transmitter Imperfections. IEEE J. Sel. Areas Commun. 2011, 29, 1469–1479. [Google Scholar] [CrossRef]
- Wang, Y.; Gui, G.; Gacanin, H.; Ohtsuki, T.; Dobre, O.A.; Poor, H.V. An Efficient Specific Emitter Identification Method Based on Complex-Valued Neural Networks and Network Compression. IEEE J. Sel. Areas Commun. 2021, 39, 2305–2317. [Google Scholar] [CrossRef]
- Ding, L.; Wang, S.; Wang, F.; Zhang, W. Specific Emitter Identification via Convolutional Neural Networks. IEEE Commun. Lett. 2018, 22, 2591–2594. [Google Scholar] [CrossRef]
- Pan, Y.; Yang, S.; Peng, H.; Li, T.; Wang, W. Specific Emitter Identification Based on Deep Residual Networks. IEEE Access 2019, 7, 54425–54434. [Google Scholar] [CrossRef]
- He, B.; Wang, F. Cooperative Specific Emitter Identification via Multiple Distorted Receivers. IEEE Trans. Inf. Forensics Secur. 2020, 15, 3791–3806. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, F.; Dobre, O.A.; Zhong, Z. Specific Emitter Identification via Hilbert–Huang Transform in Single-Hop and Relaying Scenarios. IEEE Trans. Inf. Forensics Secur. 2016, 11, 1192–1205. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Y.; Wang, C.; Wang, M.; Tu, Y.; Wang, J. An Ensemble Learning Method for Wireless Multimedia Device Identification. Secur. Commun. Netw. 2018, 2018, 5264526. [Google Scholar] [CrossRef]
- Zha, X.; Chen, H.; Li, T.; Qiu, Z.; Feng, Y. Specific Emitter Identification Based on Complex Fourier Neural Network. IEEE Commun. Lett. 2022, 26, 592–596. [Google Scholar] [CrossRef]
- Clark, W.H.; Hauser, S.; Headley, W.C.; Michaels, A.J. Training Data Augmentation for Deep Learning Radio Frequency Systems. J. Def. Model. Simul. 2021, 18, 217–237. [Google Scholar] [CrossRef]
- Lin, Y.; Jia, J.; Wang, S.; Ge, B.; Mao, S. Wireless Device Identification Based on Radio Frequency Fingerprint Features. In Proceedings of the ICC 2020—2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Box, G. Signal-to-Noise Ratios, Performance Criteria, and Transformations. Technometrics 1988, 30, 1–17. [Google Scholar] [CrossRef]
- Wang, W.; Sun, Z.; Piao, S.; Zhu, B.; Ren, K. Wireless Physical-Layer Identification: Modeling and Validation. IEEE Trans. Inf. Forensics Secur. 2016, 11, 2091–2106. [Google Scholar] [CrossRef]
- Danev, B.; Zanetti, D.; Capkun, S. On Physical-Layer Identification of Wireless Devices. ACM Comput. Surv. 2012, 45, 6. [Google Scholar] [CrossRef]
- Michaels, A.J.; Wong, L.J. Multinomial-Based Decision Synthesis of ML Classification Outputs. In Modeling Decisions for Artificial Intelligence; Lecture Notes in Computer Science; Torra, V., Narukawa, Y., Eds.; Springer: Cham, Switzerland, 2021; pp. 156–167. [Google Scholar] [CrossRef]
- Polikar, R. Ensemble learning. Scholarpedia 2009, 4, 2776. [Google Scholar] [CrossRef]
- Abbas, S.; Nasir, Q.; Nouichi, D.; Abdelsalam, M.; Abu Talib, M.; Abu Waraga, O.; Khan, A.u.R. Improving Security of the Internet of Things via RF Fingerprinting Based Device Identification System. Neural Comput. Appl. 2021, 33, 14753–14769. [Google Scholar] [CrossRef]
- Patel, H.J.; Temple, M.A.; Baldwin, R.O. Improving ZigBee Device Network Authentication Using Ensemble Decision Tree Classifiers With Radio Frequency Distinct Native Attribute Fingerprinting. IEEE Trans. Reliab. 2015, 64, 221–233. [Google Scholar] [CrossRef]
- Wong, L.J.; Michaels, A.J. Transfer Learning for Radio Frequency Machine Learning: A Taxonomy and Survey. Sensors 2022, 22, 1416. [Google Scholar] [CrossRef] [PubMed]
- Muller, B.P.; Wong, L.J.; Clark, W.H.; Michaels, A.J. A Real-World Dataset Generator for Specific Emitter Identification. IEEE Access 2023, 11, 110023–110038. [Google Scholar] [CrossRef]
- Great Scott Gadgets. YARD Stick One. 2023. Available online: https://greatscottgadgets.com/yardstickone/ (accessed on 1 December 2023).
- Muller, B.; Olds, B.; Wong, L.; Michaels, A. Transferring Learned Behaviors Between Similar and Different Radios. Sensors 2024, 24, 3574. [Google Scholar] [CrossRef]
- Olds, B.; Michaels, A. Temperature Sensitivity of RFML Algorithms. In Proceedings of the 2024 IEEE International Conference on Communications Workshop on Machine Learning and Deep Learning for Wireless Security, Denver, CO, USA, 9–13 June 2024; Volume 6. [Google Scholar] [CrossRef]
- Matuszewski, J. Specific Emitter Identification. In Proceedings of the 2008 International Radar Symposium, Wroclaw, Poland, 21–23 May 2008; pp. 1–4. [Google Scholar] [CrossRef]
- Muller, B.; Wong, L.; Michaels, A. Sensitivity Analysis of RFML Applications. IEEE Access 2024, 12, 80327–80344. [Google Scholar] [CrossRef]
- Brik, V.; Banerjee, S.; Gruteser, M.; Oh, S. Wireless device identification with radiometric signatures. In Proceedings of the 14th ACM International Conference on Mobile Computing and Networking, San Francisco, CA, USA, 14–19 September 2008; pp. 116–127. [Google Scholar] [CrossRef]
- Liu, C.; Fu, X.; Wang, Y.; Guo, L.; Liu, Y.; Lin, Y.; Zhao, H.; Gui, G. Overcoming Data Limitations: A Few-Shot Specific Emitter Identification Method Using Self-Supervised Learning and Adversarial Augmentation. IEEE Trans. Inf. Forensics Secur. 2024, 19, 500–513. [Google Scholar] [CrossRef]
- Yurui, Z.; Xiang, W.; Liting, S.; Zhitao, H. Specific emitter identification based on frequency and amplitude of the signal kurtosis. J. Syst. Eng. Electron. 2023, 36, 333–343. [Google Scholar] [CrossRef]
- Tyler, J.H.; Fadul, M.K.M.; Reising, D.R. Considerations, Advances, and Challenges Associated with the Use of Specific Emitter Identification in the Security of Internet of Things Deployments: A Survey. Information 2023, 14, 479. [Google Scholar] [CrossRef]
- Peng, H.; Xie, K.; Zou, W. Research on an Enhanced Multimodal Network for Specific Emitter Identification. Electronics 2024, 13, 651. [Google Scholar] [CrossRef]
- Sa, K.; Lang, D.; Wang, C.; Bai, Y. Specific Emitter Identification Techniques for the Internet of Things. IEEE Access 2020, 8, 1644–1652. [Google Scholar] [CrossRef]
- Zhu, C.; Liu, L.; Peng, X. Specific Emitter Identification Based on Temporal Convolutional Network Sequence Processing. IEEE Commun. Lett. 2023, 27, 2667–2671. [Google Scholar] [CrossRef]
- Dudczyk, J.; Matuszewski, J.; Wnuk, M. Applying the radiated emission to the specific emitter identification. In Proceedings of the 15th International Conference on Microwaves, Radar and Wireless Communications (IEEE Cat. No. 04EX824), Warsaw, Poland, 17–19 May 2004; Volume 2, pp. 431–434. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Sun, J.; Ohtsuki, T.; Gui, G. Attention-CNN-Aided Specific Emitter Identification Method with Limited Radio Frequency Dataset. In Proceedings of the 2022 IEEE 22nd International Conference on Communication Technology (ICCT), Nanjing, China, 11–14 November 2022; pp. 1536–1540. [Google Scholar] [CrossRef]
- Tyler, J.H.; Reising, D.R.; Kandah, F.I.; Kaplanoglu, E.; Fadul, M.M.K. Physical Layer-Based IoT Security: An Investigation Into Improving Preamble-Based SEI Performance When Using Multiple Waveform Collections. IEEE Access 2022, 10, 133601–133616. [Google Scholar] [CrossRef]
- Guo, S.; Akhtar, S.; Mella, A. A Method for Radar Model Identification Using Time-Domain Transient Signals. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 3132–3149. [Google Scholar] [CrossRef]
- Shi, M.; Huang, Y.; Wang, G. Receiver Distortion Nornalization Method for Specific Emitter Identification. In Proceedings of the 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China, 11–13 December 2020; Volume 9, pp. 1728–1732. [Google Scholar] [CrossRef]
- Fadul, M.K.M.; Reising, D.R.; Weerasena, L.P.; Loveless, T.D.; Sartipi, M.; Tyler, J.H. Improving RF-DNA Fingerprinting Performance in an Indoor Multipath Environment Using Semi-Supervised Learning. IEEE Trans. Inf. Forensics Secur. 2024, 19, 3194–3209. [Google Scholar] [CrossRef]
- Zeng, M.; Liu, Z.; Wang, Z.; Liu, H.; Li, Y.; Yang, H. An Adaptive Specific Emitter Identification System for Dynamic Noise Domain. IEEE Internet Things J. 2022, 9, 25117–25135. [Google Scholar] [CrossRef]
- Pan, J.; Guo, L.; Chen, Q.; Zhang, S.; Xiong, J. Specific Radar Emitter Identification Using 1D-CBAM-ResNet. In Proceedings of the 2022 14th International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 1–3 November 2022; pp. 483–488. [Google Scholar] [CrossRef]
- Wong, L.J.; Headley, W.C.; Michaels, A.J. Specific Emitter Identification Using Convolutional Neural Network-Based IQ Imbalance Estimators. IEEE Access 2019, 7, 33544–33555. [Google Scholar] [CrossRef]
- Springenberg, J.T.; Dosovitskiy, A.; Brox, T.; Riedmiller, M. Striving for Simplicity: The All Convolutional Net. arXiv 2015, arXiv:1412.6806. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Aghnaiya, A.; Ali, A.M.; Kara, A. Variational Mode Decomposition-Based Radio Frequency Fingerprinting of Bluetooth Devices. IEEE Access 2019, 7, 144054–144058. [Google Scholar] [CrossRef]
- Ali, A.M.; Uzundurukan, E.; Kara, A. Assessment of Features and Classifiers for Bluetooth RF Fingerprinting. IEEE Access 2019, 7, 50524–50535. [Google Scholar] [CrossRef]
- Toonstra, J.; Kinsner, W. Transient Analysis and Genetic Algorithms for Classification. In Proceedings of the IEEE WESCANEX 95. Communications, Power, and Computing, Conference Proceedings, Winnipeg, MB, Canada, 15–16 May 1995; Volume 2, pp. 432–437. [Google Scholar] [CrossRef]
- Arechiga, A.P.; Michaels, A.J. The effect of weight errors on neural networks. In Proceedings of the 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 8–10 January 2018; pp. 190–196. [Google Scholar] [CrossRef]
Model Architecture | Structure | Training Time | Reference |
---|---|---|---|
CNN | 2-D Convolutional and | 1562 ex/class: 40 min 15,625 ex/class: 6.54 h 78,125 ex/class: 32.2 h | [41] |
Fully Connected Layers | |||
with ReLU Activation and | |||
Batch Normalization | |||
FullConv | Modifed CNN structure | 1562 ex/class: 40 min | [42] |
with Various Sizes of | 15,625 ex/class: 6.48 h | ||
Convolutional Layers | 78,125 ex/class: 32.3 h | ||
LSTM | 1-D CNN and Recurrent | 1562 ex/class: 41 min | [43] |
Connections as Recurrent | 15,625 ex/class: 6.65 h | ||
Neural Network (RNN) | 78,125 ex/class: 32.8 h | ||
CLDNN | 1-D Convolutional and | 1562 ex/class: 41.5 min | [10] |
LSTM Layers with ReLU | 15,625 ex/class: 6.58 h | ||
Activation and | 78,125 ex/class: 33.0 h | ||
Batch Normalization | |||
Ensemble | Combines CNN, FullConv, | 1562 ex/class: 43 min | [10,41] |
LSTM, and CLDNN | 15,625 ex/class: 7.14 h | ||
through Bagging | 78,125 ex/class: 34.8 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olds, B.; Maas, E.; Michaels, A.J. Evaluation of Confusion Behaviors in SEI Models. Sensors 2025, 25, 4006. https://doi.org/10.3390/s25134006
Olds B, Maas E, Michaels AJ. Evaluation of Confusion Behaviors in SEI Models. Sensors. 2025; 25(13):4006. https://doi.org/10.3390/s25134006
Chicago/Turabian StyleOlds, Brennan, Ethan Maas, and Alan J. Michaels. 2025. "Evaluation of Confusion Behaviors in SEI Models" Sensors 25, no. 13: 4006. https://doi.org/10.3390/s25134006
APA StyleOlds, B., Maas, E., & Michaels, A. J. (2025). Evaluation of Confusion Behaviors in SEI Models. Sensors, 25(13), 4006. https://doi.org/10.3390/s25134006