Multi-Variant Damage Assessment in Composite Materials Using Acoustic Emission
Abstract
:Highlights
- The accurate identification of damage modes in composite materials through the analysis of the frequency content of acoustic waveforms.
- A multi-variant analysis of acoustic emission signals using fast Fourier transform and wavelet transform analysis based on the empirical wave transform.
- Quantitative acoustic emission based on the frequency range of signals.
- The classification of acoustic emission signals with respect to damage modes.
Abstract
1. Introduction
1.1. Background and Requirements
1.2. Current Approaches
1.3. Main Limitations of Current Approaches
1.4. Frequency-Based Analysis
1.5. Other Types of Materials and Additional Considerations
2. Materials and Methods
2.1. Materials
2.2. Mechanical Testing
2.3. Acoustic Emission Acquisition
2.4. Digital Signal Processing
3. Results
3.1. Peak Frequency Assessment and Damage Mode Classification
3.2. Multi-Variant Assessment
3.2.1. Fourier Transform
3.2.2. Wavelet Transform
4. Discussion
4.1. Method Comparison
4.2. Tracking Damage Propagation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FRP | Fibre-Reinforced Polymer |
SHM | Structural Health Monitoring |
SCC | Stress Corrosion Cracking |
NDT | Non-Destructive Testing |
UT | Ultrasonic Testing |
WTB | Wind Turbine Blades |
CM | Condition Monitoring |
AE | Acoustic Emission |
DSP | Digital Signal Processing |
RMS | Root Mean Square |
FFT | Fast Fourier Transform |
WT | Wavelet Transform |
DWT | Discrete Wavelet Transform |
CFRP | Carbon Fibre-Reinforced Polymer |
QRS | Quantum Resonance Sensor |
SEM | Scanning Electron Microscopy |
EWT | Empirical Wavelet Transform |
References
- Qureshi, J. A Review of Fibre Reinforced Polymer Structures. Fibers 2022, 10, 27. [Google Scholar] [CrossRef]
- Garnier, C.; Pastor, M.-L.; Eyma, F.; Lorrain, B. The Detection of Aeronautical Defects in Situ on Composite Structures Using Non Destructive Testing. Compos. Struct. 2011, 93, 1328–1336. [Google Scholar] [CrossRef]
- Bussiba, A.; Kupiec, M.; Ifergane, S.; Piat, R.; Bohlke, T. Damage Evolution and Fracture Events Sequence in Various Composites by Acoustic Emission Technique. Compos. Sci. Technol. 2007, 68, 1144–1155. [Google Scholar] [CrossRef]
- Li, W.; Liu, Y.; Jiang, P.; Guo, F.; Cheng, J. Study on Delamination Damage of CFRP Laminates Based on Acoustic Emission and Micro Visualization. Materials 2022, 15, 1483. [Google Scholar] [CrossRef]
- De Groot, P.J.; Wijnen, P.A.M.; Janssen, R.B.F. Real-Time Frequency Determination of Acoustic Emission for Different Fracture Mechanisms in Carbon/Epoxy Composites. Compos. Sci. Technol. 1995, 55, 405–412. [Google Scholar] [CrossRef]
- Rose, J.L. Ultrasonic Guided Waves in Solid Media, 1st ed.; Cambridge University Press: Cambridge, UK, 2014; ISBN 978-1-107-04895-9. [Google Scholar]
- Su, Z.; Ye, L. Identification of Damage Using Lamb Waves; Lecture Notes in Applied and Computational Mechanics; Springer: London, UK, 2009; Volume 48, ISBN 978-1-84882-783-7. [Google Scholar]
- Fotouhi, M.; Najafabadi, M.A. Acoustic Emission-Based Study to Characterize the Initiation of Delamination in Composite Materials. J. Thermoplast. Compos. Mater. 2016, 29, 519–537. [Google Scholar] [CrossRef]
- Qi, G. Wavelet-Based AE Characterization of Composite Materials. NDT E Int. 2000, 33, 133–144. [Google Scholar] [CrossRef]
- Barile, C.; Casavola, C.; Pappalettera, G.; Paramsamy Kannan, V. Acoustic Emission Waveforms for Damage Monitoring in Composite Materials: Shifting in Spectral Density, Entropy and Wavelet Packet Transform. Struct. Health Monit. 2022, 21, 1768–1789. [Google Scholar] [CrossRef]
- Rather, A.I.; Mirgal, P.; Banerjee, S.; Laskar, A. Application of Acoustic Emission as Damage Assessment Technique for Performance Evaluation of Concrete Structures: A Review. Pract. Period. Struct. Des. Constr. 2023, 28, 03123003. [Google Scholar] [CrossRef]
- Muñoz-Ibáñez, A.; Delgado-Martín, J.; Herbón-Penabad, M.; Alvarellos-Iglesias, J. Acoustic Emission Monitoring of Mode I Fracture Toughness Tests on Sandstone Rocks. J. Pet. Sci. Eng. 2021, 205, 108906. [Google Scholar] [CrossRef]
- Verstrynge, E.; Lacidogna, G.; Accornero, F.; Tomor, A. A Review on Acoustic Emission Monitoring for Damage Detection in Masonry Structures. Constr. Build. Mater. 2021, 268, 121089. [Google Scholar] [CrossRef]
- Xu, J.; Luo, X.; Qiu, X.; Hu, G. Wavelet and Fractal Analysis of Acoustic Emission Characteristic of Fatigue Damage of Asphalt Mixtures. Constr. Build. Mater. 2022, 349, 128643. [Google Scholar] [CrossRef]
- Physical Acoustics Corporation. MISTRAS Group Inc R50-Alpha 2010; Physical Acoustics Corporation: West Windsor Township, NJ, USA, 2010. [Google Scholar]
- McCrory, J.P.; Al-Jumaili, S.K.; Crivelli, D.; Pearson, M.R.; Eaton, M.J.; Featherston, C.A.; Guagliano, M.; Holford, K.M.; Pullin, R. Damage Classification in Carbon Fibre Composites Using Acoustic Emission: A Comparison of Three Techniques. Compos. Part B Eng. 2015, 68, 424–430. [Google Scholar] [CrossRef]
- Ikotun, A.M.; Ezugwu, A.E.; Abualigah, L.; Abuhaija, B.; Heming, J. K-Means Clustering Algorithms: A Comprehensive Review, Variants Analysis, and Advances in the Era of Big Data. Inf. Sci. 2023, 622, 178–210. [Google Scholar] [CrossRef]
- Zimmermann, N.; Wang, P.H. A Review of Failure Modes and Fracture Analysis of Aircraft Composite Materials. Eng. Fail. Anal. 2020, 115, 104692. [Google Scholar] [CrossRef]
- Pysarenko, O. Cluster Analysis of Mechanical Damage in Laminated Composites. In Proceedings of the Education and Science of Today: Intersectoral Issues and Development of Sciences, European Scientific Platform, Cambridge, UK, 18 October 2024. [Google Scholar]
- Rebière, J.-L. The Initiation of Transverse Matrix Cracking and Longitudinal Matrix Cracking in Composite Cross-Ply Laminates: Analysis of a Damage Criterion. Cogent Eng. 2016, 3, 1175060. [Google Scholar] [CrossRef]
- Greenhalgh, E. Fibre-Dominated Failures of Polymer Composites. In Failure Analysis and Fractography of Polymer Composites; Elsevier: Amsterdam, The Netherlands, 2009; pp. 107–163. ISBN 978-1-84569-217-9. [Google Scholar]
- Rebière, J.-L. Matrix Cracking and Delamination Evolution in Composite Cross-Ply Laminates. Cogent Eng. 2014, 1, 943547. [Google Scholar] [CrossRef]
- Gutkin, R.; Green, C.J.; Vangrattanachai, S.; Pinho, S.T.; Robinson, P.; Curtis, P.T. On Acoustic Emission for Failure Investigation in CFRP: Pattern Recognition and Peak Frequency Analyses. Mech. Syst. Signal Process. 2011, 25, 1393–1407. [Google Scholar] [CrossRef]
- Saputra, D.M.; Saputra, D.; Oswari, L.D. Effect of Distance Metrics in Determining K-Value in K-Means Clustering Using Elbow and Silhouette Method. In Proceedings of the Sriwijaya International Conference on Information Technology and Its Applications (SICONIAN 2019), Palembang, Indonesia, 16 November 2019; Atlantis Press: Dordrecht, The Netherlands, 2020. [Google Scholar]
- Shahapure, K.R.; Nicholas, C. Cluster Quality Analysis Using Silhouette Score. In Proceedings of the 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA), Sydney, Australia, 6–9 October 2020; IEEE: New York, NY, USA, 2020; pp. 747–748. [Google Scholar]
- Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Portland, OR, USA, 2–4 August 1996. [Google Scholar]
- Yin, L.; Hu, H.; Li, K.; Zheng, G.; Qu, Y.; Chen, H. Improvement of DBSCAN Algorithm Based on K-Dist Graph for Adaptive Determining Parameters. Electronics 2023, 12, 3213. [Google Scholar] [CrossRef]
- Saeedifar, M.; Zarouchas, D. Damage Characterization of Laminated Composites Using Acoustic Emission: A Review. Compos. Part B Eng. 2020, 195, 108039. [Google Scholar] [CrossRef]
- Wirtz, S.F.; Beganovic, N.; Söffker, D. Investigation of Damage Detectability in Composites Using Frequency-Based Classification of Acoustic Emission Measurements. Struct. Health Monit. 2019, 18, 1207–1218. [Google Scholar] [CrossRef]
- Liu, W.; Chen, W. Recent Advancements in Empirical Wavelet Transform and Its Applications. IEEE Access 2019, 7, 103770–103780. [Google Scholar] [CrossRef]
Damage Mode | Lower Limit (kHz) | Upper Limit (kHz) | Colour |
---|---|---|---|
Matrix cracking | 100 | 200 | Red |
Delamination | 205 | 265 | Orange |
Debonding | 270 | 320 | Green |
Fibre fracture | 330 | 385 | Cyan |
Fibre pullout | 395 | 490 | Blue |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gee, M.; Roshanmanesh, S.; Hayati, F.; Papaelias, M. Multi-Variant Damage Assessment in Composite Materials Using Acoustic Emission. Sensors 2025, 25, 3795. https://doi.org/10.3390/s25123795
Gee M, Roshanmanesh S, Hayati F, Papaelias M. Multi-Variant Damage Assessment in Composite Materials Using Acoustic Emission. Sensors. 2025; 25(12):3795. https://doi.org/10.3390/s25123795
Chicago/Turabian StyleGee, Matthew, Sanaz Roshanmanesh, Farzad Hayati, and Mayorkinos Papaelias. 2025. "Multi-Variant Damage Assessment in Composite Materials Using Acoustic Emission" Sensors 25, no. 12: 3795. https://doi.org/10.3390/s25123795
APA StyleGee, M., Roshanmanesh, S., Hayati, F., & Papaelias, M. (2025). Multi-Variant Damage Assessment in Composite Materials Using Acoustic Emission. Sensors, 25(12), 3795. https://doi.org/10.3390/s25123795