Design and Application of a Radiofrequency Spectrophotometry Sensor for Measuring Esophageal Liquid Flow to Detect Gastroesophageal Reflux
Abstract
:Highlights
- A radiofrequency spectrophotometry sensor was developed for the non-invasive de-tect GERD by measuring esophageal liquid flow and ionicity;
- It identified beta dispersion relaxation as a biomarker for esophageal tissue damage and alpha dispersion conductivity as an indicator of reflux, showing high sensitivity.
- The sensor offers a patient-friendly, real-time alternative to endoscopy and pH moni-toring, eliminating associated discomfort;
- This innovation enables continuous GERD monitoring, enhancing diagnostic accu-racy and supporting long-term tracking in clinical and ambulatory care.
Abstract
1. Introduction
2. Materials and Methods
2.1. Population
2.2. Characterization of Each Individual
2.3. Impedance Analyser to Obtain Permittivity Measurements
2.4. Procedure
2.5. Statistical Analysis
3. Results
3.1. Participant Health and Lifestyle Information
3.2. Sensor Design and Adaptation to Achieve the Required Depth
3.3. Statistical Analysis on Relaxation Values
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GERD | gastroesophageal reflux disease |
FPGA | field-programmable gate array |
UHT | ultra-high temperature |
LES | lower esophageal sphincter |
References
- Vakil, N.; van Zanten, S.V.; Kahrilas, P.; Dent, J.; Jones, R.; Global Consensus, G. The Montreal Definition and Classification of Gastroesophageal Reflux Disease: A Global Evidence-Based Consensus. Off. J. Am. Coll. Gastroenterol. | ACG 2006, 101, 1900–1920. [Google Scholar] [CrossRef] [PubMed]
- El-Serag, H.B.; Sweet, S.; Winchester, C.C.; Dent, J. Update on the epidemiology of gastro-oesophageal reflux disease: A systematic review. Gut 2014, 63, 871–880. [Google Scholar] [CrossRef] [PubMed]
- Jeong, I.D. A Review of Diagnosis of GERD. Korean J. Gastroenterol. 2017, 69, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.L.; Yao, T.; Wang, Y.W.; Zhou, Z.X.; Hong, Z.C.; Shen, Y.; Yan, Y.; Li, Y.C.; Lin, J.F. Potential drug targets for gastroesophageal reflux disease and Barrett’s esophagus identified through Mendelian randomization analysis. J. Hum. Genet. 2024, 69, 245–253. [Google Scholar] [CrossRef]
- Schweckendiek, D.; Pohl, D. Established and Novel Methods to Assess GERD: An Update. Visc. Med. 2024, 40, 331–338. [Google Scholar] [CrossRef]
- Desai, M.; Ruan, W.; Thosani, N.C.; Amaris, M.; Scott, J.S.; Saeed, A.; Abu Dayyeh, B.; Canto, M.I.; Abidi, W.; Alipour, O.; et al. American Society for Gastrointestinal Endoscopy guideline on the diagnosis and management of GERD: Summary and recommendations. Gastrointest. Endosc. 2025, 101, 267–284. [Google Scholar] [CrossRef]
- Huang, J.Q.; Hunt, R.H. pH, healing rate, and symptom relief in patients with GERD. Yale J. Biol. Med. 1999, 72, 181–194. [Google Scholar]
- Layne, S.J.; Lorsch, Z.S.; Patel, A. Novel Diagnostic Techniques in the Evaluation of Gastroesophageal Reflux Disease (GERD). Dig. Dis. Sci. 2023, 68, 2226–2236. [Google Scholar] [CrossRef]
- Cohen, D.L.; Avivi, E.; Vosko, S.; Richter, V.; Shirin, H.; Bermont, A. Sedation and Endoscopy-Assisted High-Resolution Manometry (SEA-HRM) in Patients Who Previously Failed Standard Esophageal Manometry. Diagnostics 2024, 14, 2232. [Google Scholar] [CrossRef]
- Chuah, K.H. Editorial: The Role of Esophageal Manometry in Diagnosing Achalasia and Esophageal Motility Disorders: Challenges and Advances. JGH Open 2025, 9, e70093. [Google Scholar] [CrossRef]
- Latorre-Rodríguez, A.R.; Mittal, S.K.; Simmonds, H.; Kim, P.; Bremner, R.M. pHoenix score: Development and validation of a novel approach to decrease the number of inconclusive GERD diagnoses. Surg. Endosc. 2024, 38, 6880–6893. [Google Scholar] [CrossRef] [PubMed]
- Sararu, R.; Peagu, R.; Fierbinteanu-Braticevici, C. The Role of Distal Mean Nocturnal Baseline Impedance in Differentiating GERD Phenotypes. J. Gastrointestin Liver Dis. 2023, 32, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L. On the expanded Maxwell’s equations for moving charged media system–General theory, mathematical solutions and applications in TENG. Mater. Today 2022, 52, 348–363. [Google Scholar] [CrossRef]
- Traffano-Schiffo, M.V.; Castro-Giraldez, M.; Colom, R.J.; Fito, P.J. Development of a Spectrophotometric System to Detect White Striping Physiopathy in Whole Chicken Carcasses. Sensors 2017, 17, 1024. [Google Scholar] [CrossRef]
- Gabriel, C.; Gabriel, S.; Corthout, E. The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol. 1996, 41, 2231–2249. [Google Scholar] [CrossRef]
- Gabriel, S.; Lau, R.W.; Gabriel, C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 1996, 41, 2251–2269. [Google Scholar] [CrossRef]
- Gabriel, S.; Lau, R.W.; Gabriel, C. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 1996, 41, 2271–2293. [Google Scholar] [CrossRef]
- Castro-Giraldez, M.; Fito, P.J.; Chenoll, C.; Fito, P. Development of a Dielectric Spectroscopy Technique for Determining Key Chemical Components of Apple Maturity. J. Agric. Food Chem. 2010, 58, 3761–3766. [Google Scholar] [CrossRef]
- Talens, C.; Carlos Arboleya, J.; Castro-Giraldez, M.; Fito, P.J. Effect of microwave power coupled with hot air drying on process efficiency and physico-chemical properties of a new dietary fibre ingredient obtained from orange peel. LWT-Food Sci. Technol. 2017, 77, 110–118. [Google Scholar] [CrossRef]
- Castro-Giraldez, M.; Fito, P.J.; Dalla Rosa, M.; Fito, P. Application of microwaves dielectric spectroscopy for controlling osmotic dehydration of kiwifruit (Actinidia deliciosa cv Hayward). Innov. Food Sci. Emerg. Technol. 2011, 12, 623–627. [Google Scholar] [CrossRef]
- Castro-Giraldez, M.; Fito, P.J.; Fito, P. Application of microwaves dielectric spectroscopy for controlling pork meat (Longissimus dorsi) salting process. J. Food Eng. 2010, 97, 484–490. [Google Scholar] [CrossRef]
- Victoria Traffano-Schiffo, M.; Castro-Giraldez, M.; Colom, R.J.; Fito, P.J. Innovative photonic system in radiofrequency and microwave range to determine chicken meat quality. J. Food Eng. 2018, 239, 1–7. [Google Scholar] [CrossRef]
- Victoria Traffano-Schiffo, M.; Castro-Giraldez, M.; Herrero, V.; Colom, R.J.; Fito, P.J. Development of a non-destructive detection system of Deep Pectoral Myopathy in poultry by dielectric spectroscopy. J. Food Eng. 2018, 237, 137–145. [Google Scholar] [CrossRef]
- Velazquez-Varela, J.; Castro-Giraldez, M.; Cuibus, L.; Tomas-Egea, J.A.; Socaciu, C.; Fito, P.J. Study of the cheese salting process by dielectric properties at microwave frequencies. J. Food Eng. 2018, 224, 121–128. [Google Scholar] [CrossRef]
- Talens, C.; Castro-Giraldez, M.; Fito, P.J. Effect of Microwave Power Coupled with Hot Air Drying on Sorption Isotherms and Microstructure of Orange Peel. Food Bioprocess. Technol. 2018, 11, 723–734. [Google Scholar] [CrossRef]
- Victoria Traffano-Schiffo, M.; Castro-Giraldez, M.; Colom, R.J.; Fito, P.J. New Spectrophotometric System to Segregate Tissues in Mandarin Fruit. Food Bioprocess. Technol. 2018, 11, 399–406. [Google Scholar] [CrossRef]
- Tomas-Egea, J.A.; Fito, P.J.; Colom, R.J.; Castro-Giraldez, M. New Sensor to Measure the Microencapsulated Active Compounds Released in an Aqueous Liquid Media Based in Dielectric Properties in Radiofrequency Range. Sensors 2021, 21, 5781. [Google Scholar] [CrossRef]
- Gallagher, D.; Heymsfield, S.B.; Heo, M.; Jebb, S.A.; Murgatroyd, P.R.; Sakamoto, Y. Healthy percentage body fat ranges: An approach for developing guidelines based on body mass index. Am. J. Clin. Nutr. 2000, 72, 694–701. [Google Scholar] [CrossRef]
- Cardozo, L.A.; Cuervo, Y.; Murcia, J. Porcentaje de grasa corporal y prevalencia de sobrepeso-obesidad en estudiantes universitarios de rendimiento deportivo de Bogotá, Colombia. Nutr. Clínica Y Dietética Hosp. 2016, 36, 68–75. [Google Scholar]
- Kaess, B.M.; Pedley, A.; Massaro, J.M.; Murabito, J.; Hoffmann, U.; Fox, C.S. The ratio of visceral to subcutaneous fat, a metric of body fat distribution, is a unique correlate of cardiometabolic risk. Diabetologia 2012, 55, 2622–2630. [Google Scholar] [CrossRef]
- Valezi, A.C.; Herbella, F.A.M.; Schlottmann, F.; Patti, M.G. Gastroesophageal Reflux Disease in Obese Patients. J. Laparoendosc. Adv. Surg. Tech. 2018, 28, 949–952. [Google Scholar] [CrossRef] [PubMed]
- Koo, J.E.; Chang, H.S.; Park, H.W.; Park, S.; Bae, I.; Lee, J.Y.; Choe, J. High Visceral-To-Subcutaneous Fat Ratio Is Associated with an Increased Risk of Gastroesophageal Reflux Disease in Nonobese Adults. Dig. Dis. 2023, 41, 666–676. [Google Scholar] [CrossRef] [PubMed]
- Kohata, Y.; Fujiwara, Y.; Watanabe, T.; Kobayashi, M.; Takemoto, Y.; Kamata, N.; Yamagami, H.; Tanigawa, T.; Shiba, M.; Tominaga, K.; et al. Correction: Long-Term Benefits of Smoking Cessation on Gastroesophageal Reflux Disease and Health-Related Quality of Life. PLoS ONE 2016, 11, e0150554. [Google Scholar] [CrossRef] [PubMed]
- Ness-Jensen, E.; Lagergren, J. Tobacco smoking, alcohol consumption and gastro-oesophageal reflux disease. Best Pract. Res. Clin. Gastroenterol. 2017, 31, 501–508. [Google Scholar] [CrossRef]
- Peyman, A.; Holden, S.J.; Watts, S.; Perrott, R.; Gabriel, C. Dielectric properties of porcine cerebrospinal tissues at microwave frequencies: In vivo, in vitro and systematic variation with age. Phys. Med. Biol. 2007, 52, 2229–2245. [Google Scholar] [CrossRef]
- Hiremath, G.; Shilts, M.; Boone, H.; Correa, H.; Acra, S.; Tovchigrechko, A.; Rajagopala, S.; Das, S. The Salivary Microbiome Is Altered in Children with Eosinophilic Esophagitis and Correlates with Disease Activity. Clin. Transl. Gastroenterol. 2019, 10, e00039. [Google Scholar] [CrossRef]
- Fan, A.; Zhang, X.; Jin, P.; Yin, F.; Sheng, J.; Ma, W.; Wang, H.; Zhang, X. A high-quality fluorescence elimination dual-wavelength Raman method for biological detection and its application in cancer diagnosis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 329, 125539. [Google Scholar] [CrossRef]
Population Parameters | Mean | ||||||||
---|---|---|---|---|---|---|---|---|---|
Age (years) | n = 49 | ||||||||
18 < x ≤ 30 | 30 < x ≤ 50 | 50 < x ≤ 70 | M | W | |||||
M | W | M | W | M | W | 28.1 | 35.4 | ||
17 | 12 | 5 | 11 | 1 | 3 | [18–53] | [20–56] | ||
Height (cm) | |||||||||
≥160 | 160 < x ≤ 170 | 170 < x ≤ 185 | 185 < x | ||||||
M | W | M | W | M | W | M | W | 178.4 | 163.0 |
0 | 8 | 3 | 16 | 15 | 2 | 5 | 0 | [164–190] | [151–176] |
Weight (kg) | |||||||||
≥50 | 50 < x ≤ 65 | 65 < x ≤ 90 | 90 < x | ||||||
M | W | M | W | M | W | M | W | 80.3 | 58.2 |
0 | 6 | 3 | 11 | 14 | 8 | 6 | 1 | [54–119] | [43–85] |
Body Fat mass fraction (g/100 g) | |||||||||
≥18.5 | 18.5 < x ≤ 26.9 | 26.9 < x ≤ 40 | 40 < x | ||||||
M | W | M | W | M | W | M | W | 19.5 | 26.0 |
9 | 1 | 10 | 13 | 4 | 8 | 0 | 4 | [0.7–38] | [18–45] |
Visceral Fat mass fraction (g/100 g) | |||||||||
≥3 | 3 < x ≤ 5 | 5 < x ≤ 9 | 9 < x < 24 | ||||||
M | W | M | W | M | W | M | W | 7.3 | 4.1 |
2 | 6 | 5 | 12 | 10 | 7 | 6 | 1 | [2–23] | [2–9] |
Skeletal protein mass fraction (g/100 g) | |||||||||
≥25 | 25 < x ≤ 30 | 30 < x ≤ 40 | 50 < x | ||||||
M | W | M | W | M | W | M | W | 40.1 | 29.3 |
0 | 3 | 1 | 13 | 11 | 10 | 11 | 0 | [28–47] | [23–34] |
Body mass index (BMI) | |||||||||
≥20 | 20 < x ≤ 22 | 22 < x ≤ 25 | 25 < x < 40 | ||||||
M | W | M | W | M | W | M | W | 25.3 | 21.8 |
1 | 12 | 3 | 6 | 12 | 1 | 7 | 7 | [19–37] | [17–34] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fito, P.J.; Colom, R.J.; Gadea-Girones, R.; Monzo, J.M.; Tebar-Ruiz, A.; Puertas, F.J.; Castro-Giraldez, M. Design and Application of a Radiofrequency Spectrophotometry Sensor for Measuring Esophageal Liquid Flow to Detect Gastroesophageal Reflux. Sensors 2025, 25, 3533. https://doi.org/10.3390/s25113533
Fito PJ, Colom RJ, Gadea-Girones R, Monzo JM, Tebar-Ruiz A, Puertas FJ, Castro-Giraldez M. Design and Application of a Radiofrequency Spectrophotometry Sensor for Measuring Esophageal Liquid Flow to Detect Gastroesophageal Reflux. Sensors. 2025; 25(11):3533. https://doi.org/10.3390/s25113533
Chicago/Turabian StyleFito, Pedro J., Ricardo J. Colom, Rafael Gadea-Girones, Jose M. Monzo, Angel Tebar-Ruiz, F. Javier Puertas, and Marta Castro-Giraldez. 2025. "Design and Application of a Radiofrequency Spectrophotometry Sensor for Measuring Esophageal Liquid Flow to Detect Gastroesophageal Reflux" Sensors 25, no. 11: 3533. https://doi.org/10.3390/s25113533
APA StyleFito, P. J., Colom, R. J., Gadea-Girones, R., Monzo, J. M., Tebar-Ruiz, A., Puertas, F. J., & Castro-Giraldez, M. (2025). Design and Application of a Radiofrequency Spectrophotometry Sensor for Measuring Esophageal Liquid Flow to Detect Gastroesophageal Reflux. Sensors, 25(11), 3533. https://doi.org/10.3390/s25113533