High-Efficiency Electromagnetic Translational–Rotary Harvester for Human Motion Impact Energy
Abstract
:1. Introduction
2. Analysis and Design of the Harvester
2.1. Harvester Design
2.2. Working Principle
3. Results and Discussion
3.1. Establish Experimental Platforms
3.2. Output Characterization from Human Motion
3.2.1. Clapping Test
3.2.2. Boxing Test
3.2.3. Stomping Test
3.3. Efficiency Discussion and Performance Comparison
3.4. Comparative Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kan, J.; Wu, Y.; Li, S.; Wang, S.; Zhang, Z. A tunable rotational energy harvester exploiting a flexible-clamping piezoelectric beam by deploying magnetic repulsive force. Sens. Actuators A Phys. 2023, 353, 114198. [Google Scholar] [CrossRef]
- Hee-Min, N. Acoustic energy harvesting using a piezoelectric generator for railway environmental noise. Adv. Mech. Eng. 2018, 10, 1687814018785058. [Google Scholar]
- Jia, P.P.; Hu, Y.X.; Peng, Z.Y.; Song, B.; Zeng, Z.Y.; Ling, Q.H.; Zhao, X.; Xu, L.; Yang, H.B. Construction of an Artificial Light-Harvesting System with Efficient Photocatalytic Activity in an Aqueous Solution Based on a FRET-Featuring Metallacage. Inorg. Chem. 2022, 62, 1950–1957. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.P.; Li, Q. Generating electricity while walking with a medial-lateral oscillating load carriage device. R. Soc. Open Sci. 2019, 6, 182021. [Google Scholar] [CrossRef]
- Sone, J. Fingertip tactile sensation via piezoelectric micromachined ultrasonic transducers with an amplified interface. Sci. Rep. 2024, 14, 2629. [Google Scholar] [CrossRef]
- Zhao, C.; Li, L. A Method to Obtain the Repeatability of Amplitude Sensitivity of a Piezoelectric Pressure Measurement System Based on Pressure Excitation and Response Measuring Points Near Pulse Amplitudes. IEEE Sens. J. 2023, 23, 30516–30521. [Google Scholar] [CrossRef]
- Zou, Y.; Sun, M.; Li, S.; Zhang, X.; Feng, L.; Wang, Y.; Du, T.; Ji, Y.; Sun, P.; Xu, M. Advances in Self-powered Triboelectric Sensor toward Marine IoT. Nano Energy 2024, 122, 109316. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, X.; Lei, Y.; Wu, Z.; Zhang, L.; Feng, M.; Wang, D.; Liu, W. A novel self-powered triboelectric sensor for early warning of lubrication failure. Nano Energy 2024, 122, 109304. [Google Scholar] [CrossRef]
- Kanokpaka, P.; Chang, L.-Y.; Wang, B.-C.; Huang, T.-H.; Shih, M.-J.; Hung, W.-S.; Lai, J.-Y.; Ho, K.-C.; Yeh, M.-H. Self-powered molecular imprinted polymers-based triboelectric sensor for noninvasive monitoring lactate levels in human sweat. Nano Energy 2022, 100, 107464. [Google Scholar] [CrossRef]
- Wu, C.; Huang, H.; Yang, S.; Wen, G. Pagoda-Shaped Triboelectric Nanogenerator with High Reliability for Harvesting Vibration Energy and Measuring Vibration Frequency in Downhole. IEEE Sens. J. 2020, 20, 13999–14006. [Google Scholar] [CrossRef]
- Wang, Z.L. Catch wave power in floating nets. Nature 2017, 542, 159–160. [Google Scholar] [CrossRef]
- Wan, J.; Wang, H.; Miao, L.; Chen, X.; Song, Y.; Guo, H.; Xu, C.; Ren, Z.; Zhang, H. A flexible hybridized electromagnetic-triboelectric nanogenerator and its application for 3D trajectory sensing. Nano Energy 2020, 74, 104878. [Google Scholar] [CrossRef]
- Liu, X.; He, L.; Liu, R.; Hu, D.; Zhang, L.; Cheng, G. Piezoelectric energy harvesting systems using mechanical tuning techniques. Rev. Sci. Instrum. 2013, 94, 031501. [Google Scholar] [CrossRef] [PubMed]
- Palayil, D.; George, B. Piezoelectric Energy Harvesting From a Magnetically Coupled Vibrational Source. IEEE Sens. J. 2021, 21, 3831–3838. [Google Scholar]
- Hou, J.; Qian, S.; Hou, X.; Zhang, J.; Wu, H.; Guo, Y.; Xian, S.; Geng, W.; Mu, J.; He, J.; et al. A high-performance mini-generator with an average power of 2W for human motion energy harvesting and wearable electronics applications. Energy Convers. Manag. 2023, 277, 116612. [Google Scholar] [CrossRef]
- Wang, W.; Cao, J.; Zhang, N.; Lin, J.; Liao, W.H. Magnetic-spring based energy harvesting from human motions: Design, modeling and experiments. Energy Convers. Manag. 2017, 132, 189–197. [Google Scholar] [CrossRef]
- Zhao, H.; Ouyang, H.; Zhang, H. A nonresonant triboelectric-electromagnetic energy harvester via a vibro-impact mechanism for low-frequency multi-directional excitations. Nano Energy 2023, 107, 108123. [Google Scholar] [CrossRef]
- Khan, U.F. Review of non-resonant vibration-based energy harvesters for wireless sensor nodes. J. Renew. Sustain. Energy 2016, 8, 044702. [Google Scholar] [CrossRef]
- Gao, S.; Feng, S.; Wang, J.; Wu, H.; Chen, Y.; Zhang, J.; Li, Y.; Wang, R.; Luo, X.; Wei, H.; et al. Hybridized Triboelectric-Electromagnetic Aeolian Vibration Generator as a Self-Powered System for Efficient Vibration Energy Harvesting and Vibration Online Monitoring of Transmission Lines. ACS Appl. Mater. Interfaces 2023, 15, 34764–34778. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, J.; Filippov, D.A.; Ge, B.; Zhang, Q.; Poddubnaya, N.; Zheng, X.; Bian, L.; Jiang, L.; Cao, L.; et al. Arbitrary low-frequency power-splitting strategy in ferrite/piezoelectric magnetoelectric heterostructures: Theory and experimental validation. Smart Mater. Struct. 2024, 33, 095019. [Google Scholar] [CrossRef]
- Zhang, J.; Du, J.; Zhang, Q.; Poddubnaya, N.; Filippov, D.; Tao, J.; Jiang, L.; Cao, L. Efficient Power Splitting and Conversion in Ferrite/Piezoelectric Transformer Magnetoelectric Composites. IEEE Trans. Ind. Electron. 2024, 71, 15179–15189. [Google Scholar] [CrossRef]
- Pantoli, L.; Leoni, A.; Stornelli, V.; Ferri, G. An IC architecture for RF Energy Harvesting systems. J. Commun. Softw. Syst. 2017, 12, 96. [Google Scholar] [CrossRef]
- Liang, X.; Liu, Z.; Feng, Y.; Han, J.; Li, L.; An, J.; Chen, P.; Jiang, T.; Wang, Z.L. Spherical triboelectric nanogenerator based on spring-assisted swing structure for effective water wave energy harvesting. Nano Energy 2021, 83, 105836. [Google Scholar] [CrossRef]
- Manikkavel, A.; Kumar, V.; Kim, J.; Lee, D.J.; Park, S.S. Investigation of high temperature vulcanized and room temperature vulcanized silicone rubber based on flexible piezo-electric energy harvesting applications with multi-walled carbon nanotube reinforced composites. Polym. Compos. 2022, 43, 1305–1318. [Google Scholar] [CrossRef]
- Toluwaloju, T.I.; Thein, C.K.; Halim, D.; Yang, J. Dynamic responses of the 2DOF electromagnetic vibration energy harvester through different electrical coil connections. Mech. Syst. Signal Process. 2023, 184, 109709. [Google Scholar] [CrossRef]
- Yu, J.; Li, D.; Li, S.; Xiang, Z.; He, Z.; Shang, J.; Wu, Y.; Liu, Y.; Li, R.-W. Electromagnetic vibration energy harvester using magnetic fluid as a lubricant and a liquid spring. Energy Convers. Manag. 2023, 286, 117030. [Google Scholar] [CrossRef]
- Kuang, Y.; Zhu, M. Parametrically excited nonlinear magnetic rolling pendulum for broadband energy harvesting. Appl. Phys. Lett. 2019, 114, 203903. [Google Scholar] [CrossRef]
- Li, X.; Yu, K.; Upadrashta, D.; Yang, Y. Comparative study of core materials and multi-degree-of-freedom sandwich piezoelectric energy harvester with inner cantilevered beams. J. Phys. D Appl. Phys. A Europhys. J. 2019, 52, 235501. [Google Scholar] [CrossRef]
- Artekha, N.S.; Shklyar, D.R. Dispersion Characteristics of Low-Frequency Electron Waves in a Magnetoactive Plasma of Arbitrary Density. Plasma Phys. Rep. 2023, 49, 1309–1321. [Google Scholar] [CrossRef]
- Wu, H.; Tao, Z.; Li, H.; Xu, T.; Wang, W.; Sun, J.; Xiao, W.; Li, H. A micro-electromagnetic vibration energy harvester with higher power density and wider bandwidth utilizing 3D MEMS coils. Appl. Phys. Lett. 2021, 119, 213904. [Google Scholar] [CrossRef]
- Roy, S.; Podder, P.; Mallick, D. Nonlinear Energy Harvesting Using Electromagnetic Transduction for Wide Bandwidth. IEEE Magn. Lett. 2016, 7, 5701004. [Google Scholar] [CrossRef]
- Feng, Y.Y.; Chen, S.J.; Cheng, S.P. Development of a miniaturized rotational electromagnetic energy harvester with a liquid metal direct-write process. Sens. Actuators A Phys. 2019, 295, 224–230. [Google Scholar] [CrossRef]
- Halim, M.A.; Rantz, R.; Zhang, Q.; Gu, L.; Yang, K.; Roundy, S. An electromagnetic rotational energy harvester using a sprung eccentric rotor, driven by pseudo-walking motion. Appl. Energy 2017, 217, 66–74. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, A.; Wang, Y.; Dai, X.; Lu, Y.; Wang, F. Rotational electromagnetic energy harvester for human motion application at low frequency. Appl. Phys. Lett. 2020, 116, 053902. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Y.; Zhang, W.; Yu, K.; Mao, J.-J.; Shen, H. Nonlinear dynamics of a magnetic vibration isolator with higher-order stable quasi-zero-stiffness. Mech. Syst. Signal Process. 2024, 218, 111584. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, W.; Yu, K.; Liu, T.; Zheng, Y. Quasi-zero-stiffness vibration isolation: Designs, improvements and applications. Eng. Struct. 2024, 301, 117282. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, R.; Yu, K.; Lee, H.P.; Liao, B. A quasi-zero-stiffness device capable of vibration isolation and energy harvesting using piezoelectric buckled beams. Energy 2021, 233, 121146. [Google Scholar] [CrossRef]
- Spreemann, D.; Manoli, Y.; Folkmer, B.; Mintenbeck, D. Non-resonant vibration conversation. J. Micromech. Microeng. 2006, 16, 169–173. [Google Scholar] [CrossRef]
- Wang, Y.R.; Feng, C.K.; Cheng, C.H.; Chen, P.T. Analysis of a clapping vibration energy harvesting system in a rotating magnetic field. Sensors 2022, 22, 6916. [Google Scholar] [CrossRef]
- Peralta-Braz, P.; Alamdari, M.M.; Ruiz, R.O.; Atroshchenko, E.; Hassan, M. Design optimisation of piezoelectric energy harvesters for bridge infrastructure. Comput. Sci. 2022, 205, 110823. [Google Scholar] [CrossRef]
- Kullukçu, B.; Bathaei, M.J.; Awais, M.; Mirzajani, H.; Beker, L. Piezoelectric PVDF-TrFE/PET Energy Harvesters for Structural Health Monitoring (SHM) Applications. Integr. Ferroelectr. 2023, 237, 216–231. [Google Scholar] [CrossRef]
- Kabakulak, M.; Arslan, S. An Electromagnetic Energy Harvester For Wireless Sensors From Power Lines: Modeling And Experiment Verification. Gazi Univ. J. Sci. 2020, 34, 786–806. [Google Scholar] [CrossRef]
Reference | Mechanism | Output Energy per Impact (mJ) | Average Power (mW) | Special Features |
---|---|---|---|---|
Peralta-Braz et al. (2022) [40] | Piezoelectric | 0.12 | 2.5 | Optimized for bridge infrastructure |
Kullukcu et al. (2022) [41] | Piezoelectric | 0.10 | 0.273 | Wind-driven, suitable for SHM |
Kabakulak & Arslan (2021) [42] | Electromagnetic | 0.2 | 3.1 | Design for power line sensors |
This work | Electromagnetc | 0.15 | 3.8 | Multi-directional impact adaptation, low-damping design |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Liu, S.; Wu, Z. High-Efficiency Electromagnetic Translational–Rotary Harvester for Human Motion Impact Energy. Sensors 2025, 25, 3453. https://doi.org/10.3390/s25113453
Wang S, Liu S, Wu Z. High-Efficiency Electromagnetic Translational–Rotary Harvester for Human Motion Impact Energy. Sensors. 2025; 25(11):3453. https://doi.org/10.3390/s25113453
Chicago/Turabian StyleWang, Shuxian, Shiyou Liu, and Zhiyi Wu. 2025. "High-Efficiency Electromagnetic Translational–Rotary Harvester for Human Motion Impact Energy" Sensors 25, no. 11: 3453. https://doi.org/10.3390/s25113453
APA StyleWang, S., Liu, S., & Wu, Z. (2025). High-Efficiency Electromagnetic Translational–Rotary Harvester for Human Motion Impact Energy. Sensors, 25(11), 3453. https://doi.org/10.3390/s25113453