Enhancing Resolution for Flash LiDAR with Multi-View Imaging Optics and Range Image Tiling
Abstract
:1. Introduction
2. System Architecture and Working Concept
3. Prototype Design and Establishment
3.1. Illumination Scanning Optics
3.2. Multi-View Imaging Optics
3.3. Flash LiDAR Device with Multi-View Imaging Optics
4. Experiment and Calibration
4.1. Stray Light Simulation and Elimination
4.2. Crosstalk Evaluation and Simulation
4.3. Calibration for Depth Evaluation
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schulte-Tigges, J.; Förster, M.; Nikolovski, G.; Reke, M.; Ferrein, A.; Kaszner, D.; Matheis, D.; Walter, T. Benchmarking of Various LiDAR Sensors for Use in Self-Driving Vehicles in Real-World Environments. Sensors 2022, 22, 7146. [Google Scholar] [CrossRef] [PubMed]
- Fawole, O.A.; Rawat, D.B. Recent Advances in 3D Object Detection for Self-Driving Vehicles: A Survey. AI 2024, 5, 1255–1285. [Google Scholar] [CrossRef]
- Shin, H.; Na, K.-I.; Chang, J.; Uhm, T. Multimodal layer surveillance map based on anomaly detection using multi-agents for smart city security. ETRI J. 2022, 44, 183–193. [Google Scholar] [CrossRef]
- Li, Z.; Han, Y.; Wu, L.; Zang, Z.; Dai, M.; Set, S.Y.; Yamashita, S.; Li, Q.; Fu, H.Y. Towards an ultrafast 3D imaging scanning LiDAR system: A review. Photon. Res. 2024, 12, 1709–1729. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, H.; Hu, Q.; Liu, H.; Liu, L.; Bennamoun, M. Deep Learning for 3D Point Clouds: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 4338–4364. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Ho, C.P.; Xue, J.; Lim, L.W.; Chen, G.; Fu, Y.H.; Lee, L.Y.T. A Progress Review on Solid-State LiDAR and Nanophoton-ics-Based LiDAR Sensors. Laser Photonics Rev. 2022, 16, 2100511. [Google Scholar] [CrossRef]
- Nakamura, K.; Narumi, K.; Kikuchi, K.; Inada, Y. Smart Photonic and Optoelectronic Integrated Circuits XXIII. Proc. SPIE 2021, 11690, 40–46. [Google Scholar]
- Kasturi, A.; Milanovic, V.; Atwood, B.H.; Yang, J. UAV-Borne LiDAR with MEMS Mirror-Based Scanning Capability. Proc. SPIE 2016, 9832, 206–215. [Google Scholar]
- Zhang, C.; Lindner, S.; Antolovíc, I.M.; Pavia, J.M.; Wolf, M.; Charbon, E. Solid-State Circuits. IEEE J. 2019, 54, 1137. [Google Scholar]
- Royo, S.; Ballesta-Garcia, M. An overview of LiDAR imaging systems for autonomous vehicles. Appl. Sci. 2019, 9, 4093. [Google Scholar] [CrossRef]
- Lee, J.; Shin, D.; Jang, B.; Byun, H.; Lee, C.; Shin, C.; Hwang, I.; Shim, D.; Lee, E.; Kim, J.; et al. Single-Chip Beam Scanner with Integrated Light Source for Real-Time Light Detection and Ranging. In Proceedings of the 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 12–18 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 7.2.1–7.2.4. [Google Scholar]
- Villa, F.; Severini, F.; Madonini, F.; Zappa, F. SPADs and SiPMs Arrays for Long-Range High-Speed Light Detection and Ranging (LiDAR). Sensors 2021, 21, 3839. [Google Scholar] [CrossRef] [PubMed]
- Li, L. Time-of-flight camera—An introduction. In Technical White Paper; no. SLOA190B; Texas Instruments: Dallas, TX, USA, 2014. [Google Scholar]
- Rogers, C.; Piggott, A.Y.; Thomson, D.J.; Wiser, R.F.; Opris, I.E.; Fortune, S.A.; Compston, A.J.; Gondarenko, A.; Meng, F.; Chen, X.; et al. A universal 3D imaging sensor on a silicon photonics platform. Nature 2021, 590, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, K.; Ardelean, A.; Wu, M.-L.; Ulku, A.C.; Antolovic, I.M.; Bruschini, C.; Charbon, E. Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 2020, 7, 346–354. [Google Scholar] [CrossRef]
- Li, Z.-P.; Huang, X.; Cao, Y.; Wang, B.; Li, Y.H.; Jin, W.; Yu, C.; Zhang, J.; Zhang, Q.; Peng, C.Z.; et al. Single-photon computational 3D imaging at 45 km. Photonics Res. 2020, 8, 1532–1540. [Google Scholar] [CrossRef]
- Chen, S.; Liu, B.; Feng, C.; Vallespi-Gonzalez, C.; Wellington, C. 3d point cloud processing and learning for autonomous driving: Impacting map creation, localization, and perception. IEEE Signal Process. Mag. 2020, 38, 68–86. [Google Scholar] [CrossRef]
- Ning, X.; Duan, P.; Li, W.; Zhang, S. Real-time 3D face alignment using an encoder-decoder network with an efficient deconvolution layer. IEEE Signal Process. Lett. 2020, 27, 1944–1948. [Google Scholar] [CrossRef]
- Li, Y.; Ma, L.; Zhong, Z.; Liu, F.; Chapman, M.A.; Cao, D.; Li, J. Deep learning for lidar point clouds in autonomous driving: A review. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 3412–3432. [Google Scholar] [CrossRef] [PubMed]
- Mersch, B.; Chen, X.; Behley, J.; Stachniss, C. Self-supervised point cloud prediction using 3d spatio-temporal convolutional networks. In Proceedings of the 5th Conference on Robot Learning, London, UK, 8–11 November 2021; PMLR: New York, NY, USA, 2022; pp. 1444–1454. [Google Scholar]
- Fang, Z.-Y.; Yen, R.-S.; Chen, C.-H. Sensing Module. TWI870838B, Taiwan. 2025. Available online: https://patents.google.com/patent/TWI870838B/en?oq=I870838 (accessed on 21 January 2025).
- Lindner, M.; Kolb, A.; Ringbeck, T. New insights into the calibration of ToF-sensors. In Proceedings of the 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Anchorage, AK, USA, 23–28 June 2008; pp. 1–5. [Google Scholar] [CrossRef]
- Kim, Y.M.; Chan, D.; Theobalt, C.; Thrun, S. Design and calibration of a multi-view TOF sensor fusion system. In Proceedings of the 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Anchorage, AK, USA, 23–28 June 2008; pp. 1–7. [Google Scholar] [CrossRef]
Item | Content |
---|---|
Range | Near: 250 mm to 800 mm |
Medium: 300 mm to 3000 mm | |
Accuracy | <2% for all ranges |
Resolution | 640 × 480 pixels |
Illumination source | CW 940 nm VCSEL * |
Receive lens | FOV * 87° × 67° including 940 nm BPF *, F/# * = 1.2 |
Sensor type | CMOS |
Item | Content |
---|---|
Material | PMMA * |
Wavelength | 940 nm |
FOV * | 30° in diagonal |
Object distance | 1500 mm |
Object height | 401.924 mm |
Image height | 4.5 mm |
Magnification ratio | 0.0112 |
MTF | MTF@88.9lp/mm > 5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yen, J.-H.; Li, S.-J.; Fang, Z.-Y.; Chen, C.-H. Enhancing Resolution for Flash LiDAR with Multi-View Imaging Optics and Range Image Tiling. Sensors 2025, 25, 3288. https://doi.org/10.3390/s25113288
Yen J-H, Li S-J, Fang Z-Y, Chen C-H. Enhancing Resolution for Flash LiDAR with Multi-View Imaging Optics and Range Image Tiling. Sensors. 2025; 25(11):3288. https://doi.org/10.3390/s25113288
Chicago/Turabian StyleYen, Jui-Hsiang, Shao-Jung Li, Zih-Ying Fang, and Cheng-Huan Chen. 2025. "Enhancing Resolution for Flash LiDAR with Multi-View Imaging Optics and Range Image Tiling" Sensors 25, no. 11: 3288. https://doi.org/10.3390/s25113288
APA StyleYen, J.-H., Li, S.-J., Fang, Z.-Y., & Chen, C.-H. (2025). Enhancing Resolution for Flash LiDAR with Multi-View Imaging Optics and Range Image Tiling. Sensors, 25(11), 3288. https://doi.org/10.3390/s25113288