Oxygen Uptake Prediction for Timely Construction Worker Fatigue Monitoring Through Wearable Sensing Data Fusion
Abstract
:1. Introduction
2. Literature Review
2.1. Wearable Sensing Technology Applications in Construction
2.2. VO2 Prediction Using Wearable Sensors
2.3. Points of Departure
3. Materials and Methods
3.1. Data Collection
3.1.1. Participants
3.1.2. Construction Activity Description
3.1.3. Measurements and Instrumentation
3.1.4. Experiment Protocol
3.2. BiLSTM-Based VO2 Prediction
3.2.1. Overview of the Proposed Approach
3.2.2. Data Processing
3.2.3. BiLSTM Model Building and Training
3.2.4. Cross-Validation and Model Evaluation
4. Results
4.1. Performances of the Proposed Model
4.2. Average Oxygen Consumption to Build One Scaffolding Unit
4.3. Comparison with Other RNN Models and Different Sensor Combinations
5. Discussions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abdelhamid, T.S.; Everett, J.G. Physiological demands during construction work. J. Constr. Eng. Manag. 2002, 128, 427–437. [Google Scholar] [CrossRef]
- Cheng, T.; Migliaccio, G.C.; Teizer, J.; Gatti, U.C. Data fusion of real-time location sensing and physiological status monitoring for ergonomics analysis of construction workers. J. Comput. Civ. Eng. 2012, 27, 320–335. [Google Scholar] [CrossRef]
- Aryal, A.; Ghahramani, A.; Becerik-Gerber, B. Monitoring fatigue in construction workers using physiological measurements. Autom. Constr. 2017, 82, 154–165. [Google Scholar] [CrossRef]
- Jebelli, H.; Choi, B.; Lee, S. Application of wearable biosensors to construction sites. II: Assessing workers’ physical demand. J. Constr. Eng. Manag. 2019, 145, 04019080. [Google Scholar] [CrossRef]
- Zhang, M.; Murphy, L.; Fang, D.; Caban-Martinez, A.J. Influence of fatigue on construction workers’ physical and cognitive function. Occup. Med. 2015, 65, 245–250. [Google Scholar] [CrossRef]
- OSHA. OSHA, Commonly Used Statistics. 2018. Available online: https://www.osha.gov/data/commonstats (accessed on 20 January 2021).
- Liberty Mutual. The Annual Liberty Mutual Workplace Safety Index. 2019. Available online: https://www.libertymutualgroup.com/about-lm/news/documents/2019-workplace-safety-index.pdf (accessed on 20 January 2021).
- Gatti, U.C.; Schneider, S.; Migliaccio, G.C. Physiological condition monitoring of construction workers. Autom. Constr. 2014, 44, 227–233. [Google Scholar] [CrossRef]
- Challoner, A.V.; Ramsay, C.A. A photoelectric plethysmograph for the measurement of cutaneous blood flow. Phys. Med. Biol. 1974, 19, 317–328. [Google Scholar] [CrossRef]
- Park, J.; Seok, H.S.; Kim, S.; Shin, H. Photoplethysmogram Analysis and Applications: An Integrative Review. Front. Physiol. 2022, 12, 808451. [Google Scholar] [CrossRef]
- Boucsein, W. Electrodermal Activity; Springer: New York, NY, USA, 2012; ISBN 978-1-4899-9020-4. [Google Scholar]
- Ali, N.; Tschenett, H.; Nater, U.M. Biomarkers of stress and disease. In Encyclopedia of Mental Health, 3rd ed.; Friedman, H.S., Markey, C.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; Volume 1, pp. 221–231. [Google Scholar]
- Alam, M.A.U.; Roy, N.; Holmes, S.; Gangopadhyay, A.; Galik, E. Automated Functional and Behavioral Health Assessment of Older Adults with Dementia. In Proceedings of the 2016 IEEE First International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), Washington, DC, USA, 27–29 June 2016; pp. 140–149. [Google Scholar] [CrossRef]
- Hwang, S.; Lee, S. Wristband-type wearable health devices to measure construction workers’ physical demands. Autom. Constr. 2017, 83, 330–340. [Google Scholar] [CrossRef]
- Jebelli, H.; Choi, B.; Lee, S. Application of Wearable Biosensors to Construction Sites. I: Assessing Workers’ Stress. J. Constr. Eng. Manag. 2019, 145, 04019079. [Google Scholar] [CrossRef]
- Witten, I.H.; Frank, E.; Hall, M.A.; Pal, C.J. Data Mining: Practical Machine Learning Tools and Techniques; Morgan Kaufmann: Burlington, MA, USA, 2016. [Google Scholar]
- Shandhi, M.M.H.; Bartlett, W.H.; Heller, J.; Etemadi, M.; Young, A.; Ploetz, T.; Inan, O. Estimation of Instantaneous Oxygen Uptake during Exercise and Daily Activities using a Wearable Cardio-Electromechanical and Environmental Sensor. IEEE J. Biomed. Health Inform. 2020, 25, 634–646. [Google Scholar] [CrossRef]
- Ahn, C.R.; Lee, S.; Sun, C.; Jebelli, H.; Yang, K.; Choi, B. Wearable sensing technology applications in construction safety and health. J. Constr. Eng. Manag. 2019, 145, 03119007. [Google Scholar] [CrossRef]
- Bangaru, S.S.; Wang, C.; Aghazadeh, F. Data Quality and Reliability Assessment of Wearable EMG and IMU Sensor for Construction Activity Recognition. Sensors 2020, 20, 5264. [Google Scholar] [CrossRef]
- Bangaru, S.S.; Wang, C.; Busam, S.A.; Aghazadeh, F. ANN-based automated scaffold builder activity recognition through wearable EMG and IMU sensors. Autom. Constr. 2021, 126, 103653. [Google Scholar] [CrossRef]
- Bangaru, S.S.; Wang, C.; Aghazadeh, F. Automated and Continuous Fatigue Monitoring in Construction Workers Using Forearm EMG and IMU Wearable Sensors and Recurrent Neural Network. Sensors 2022, 22, 9729. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.; Raja Ghazilla, R.A.; Khairi, N.; Kasi, V. Reviews on Various Inertial Measurement Unit (IMU) Sensor Applications. Int. J. Signal Process. Syst. 2013, 1, 256–262. [Google Scholar] [CrossRef]
- Khusainov, R.; Azzi, D.; Achumba, I.; Bersch, S. Realtime human ambulation, activity, and physiological monitoring: Taxonomy of issues, techniques, applications, challenges and limitations. Sensors 2013, 13, 12852–12902. [Google Scholar] [CrossRef]
- Kim, S.; Nussbaum, M. Performance evaluation of a wearable inertial motion capture system for capturing physical exposures during manual material handling tasks. Ergonomics 2013, 56, 314–326. [Google Scholar] [CrossRef]
- Seel, T.; Raisch, J.; Schauer, T. IMU-based joint angle measurement for gait analysis. Sensors 2014, 14, 6891–6909. [Google Scholar] [CrossRef]
- Alwasel, A.; Abdel-Rahman, E.M.; Haas, C.T.; Lee, S. Experience, productivity, and musculoskeletal injury among masonry workers. J. Constr. Eng. Manag. 2017, 143, 05017003. [Google Scholar] [CrossRef]
- Chen, J.; Qiu, J.; Ahn, C. Construction worker’s awkward posture recognition through supervised motion tensor decomposition. Autom. Constr. 2017, 77, 67–81. [Google Scholar] [CrossRef]
- Nath, N.; Akhavian, R.; Behzadan, A. Ergonomic analysis of construction worker’s body postures using wearable mobile sensors. Appl. Ergon. 2017, 62, 107–117. [Google Scholar] [CrossRef]
- Lim, S.K.; Beom, J.; Lee, S.Y.; Kim, B.R.; Chun, S.W.; Lim, J.Y.; Lee, E.S. Association between sarcopenia and fall characteristics in older adults with fragility hip fracture. Injury 2020, 51, 2640–2647. [Google Scholar] [CrossRef]
- Yang, K.; Ahn, C.; Vuran, M.; Aria, S. Semi-supervised near-miss fall detection for ironworkers with a wearable inertial measurement unit. Autom. Constr. 2016, 68, 194–202. [Google Scholar] [CrossRef]
- Wu, W.; Yang, H.; Chew, D.; Yang, S.H.; Gibb, A.; Li, Q. Towards an autonomous real-time tracking system of near-miss accidents on construction sites. Autom. Constr. 2010, 19, 134–141. [Google Scholar] [CrossRef]
- Al Rasyid, M.; Pranata, A.; Lee, B.; Saputra, F.A.; Sudarsono, A. Portable Electrocardiogram Sensor Monitoring System Based on Body Area Network. In Proceedings of the 2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), Nantou, Taiwan, 27–29 May 2016; pp. 1–2. [Google Scholar]
- Nemati, E.; Deen, M.J.; Mondal, T. A wireless wearable ECG sensor for long-term applications. IEEE Commun. Mag. 2012, 50, 36–43. [Google Scholar] [CrossRef]
- Altini, M.; Penders, J.; Amft, O. Personalizing energy expenditure estimation using a cardiorespiratory fitness predicate. In Proceedings of the 2013 7th International Conference on Pervasive Computing Technologies for Healthcare and Workshops, Venice, Italy, 5–8 May 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 65–72. [Google Scholar]
- Taebi, A.; Solar, B.E.; Bomar, A.J.; Sandler, R.H.; Mansy, H.A. Recent Advances in Seismocardiography. Vibration 2019, 2, 64–86. [Google Scholar] [CrossRef]
- Landreani, F.; Martin-Yebra, A.; Casellato, C.; Frigo, C.; Pavan, E.; Migeotte, P.-F.; Caiani, E.G. Beat-to-beat Heart Rate detection by Smartphone’s Accelerometers: Validation with ECG. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 525–528. [Google Scholar]
- Koegelenberg, S.; Scheffer, C.; Blanckenberg, M.M.; Doubell, A.F. Application of laser doppler vibrometery for human heart auscultation. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 4479–4482. [Google Scholar]
- Hwang, S.; Seo, J.; Jebelli, H.; Lee, S. Feasibility analysis of heart rate monitoring of construction workers using a photoplethysmography (PPG) sensor embedded in a wristband-type activity tracker. Autom. Constr. 2016, 71, 372–381. [Google Scholar] [CrossRef]
- Jebelli, H.; Lee, S. Feasibility of Wearable Electromyography (EMG) to Assess Construction Workers’ Muscle Fatigue. In Proceedings of the 35th CIB W78 2018 Conference IT in Design, Construction, and Management (CIB W78 2018), Chicago, IL, USA, 1–3 October 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 181–187. [Google Scholar]
- Moritani, T.; Stegeman, D.F.; Merletti, R. Basic physiology and biophysics of EMG signal generation. In Electromyography: Physiology, Engineering, and Noninvasive Applications; Merletti, R., Parker, P., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Nimbarte, A.D.; Aghazadeh, F.; Ikuma, L.H.; Harvey, C.M. Neck disorders among construction workers: Understanding the physical loads on the cervical spine during static lifting tasks. Ind. Health 2010, 48, 145–153. [Google Scholar] [CrossRef]
- Chang, S.E.; Pesek, T.; Pote, T.R.; Hull, J.; Geissinger, J.; Simon, A.A.; Alemi, M.M.; Asbeck, A.T. Design and preliminary evaluation of a flexible exoskeleton to assist with lifting. Wearable Technol. 2020, 1, e10. [Google Scholar] [CrossRef]
- Maman, Z.S.; Yazdi, M.A.A.; Cavuoto, L.A.; Megahed, F.M. A data-driven approach to modeling physical fatigue in the workplace using wearable sensors. Appl. Ergon. 2017, 65, 515–529. [Google Scholar] [CrossRef] [PubMed]
- Borror, A.; Mazzoleni, M.; Coppock, J.; Jensen, B.C.; Wood, W.A.; Mann, B.; Battaglini, C.L. Predicting oxygen uptake responses during cycling at varied intensities using an artificial neural network. Biomed. Hum. Kinet. 2019, 11, 60–68. [Google Scholar] [CrossRef]
- Altini, M.; Penders, J.; Amft, O. Estimating oxygen uptake during nonsteady-state activities and transitions using wearable sensors. IEEE J. Biomed. Health Inform. 2015, 20, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Beltrame, T.; Amelard, R.; Wong, A.; Hughson, R.L. Prediction of oxygen uptake dynamics by machine learning analysis of wearable sensors during activities of daily living. Sci. Rep. 2017, 7, 45738. [Google Scholar] [CrossRef]
- Lu, K.; Yang, L.; Seoane, F.; Abtahi, F.; Forsman, M.; Lindecrantz, K. Fusion of heart rate, respiration and motion measurements from a wearable sensor system to enhance energy expenditure estimation. Sensors 2018, 18, 3092. [Google Scholar] [CrossRef]
- Zignoli, A.; Fornasiero, A.; Ragni, M.; Pellegrini, B.; Schena, F.; Biral, F.; Laursen, P.B. Estimating an individual’s oxygen uptake during cycling exercise with a recurrent neural network trained from easy-to-obtain inputs: A pilot study. PLoS ONE 2020, 15, e0229466. [Google Scholar] [CrossRef]
- Aloqlah, M.; Lahiji, R.R.; Loparo, K.A.; Mehregany, M. A headband for classifying human postures. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 382–385. [Google Scholar]
- Barut, O.; Zhou, L.; Luo, Y. Multitask LSTM Model for Human Activity Recognition and Intensity Estimation Using Wearable Sensor Data. IEEE Internet Things J. 2020, 7, 8760–8768. [Google Scholar] [CrossRef]
- Ordóñez, F.J.; Roggen, D. Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition. Sensors 2016, 16, 115. [Google Scholar] [CrossRef]
- Bouktif, S.; Fiaz, A.; Ouni, A.; Serhani, M.A. Optimal deep learning lstm model for electric load forecasting using feature selection and genetic algorithm: Comparison with machine learning approaches. Energies 2018, 11, 1636. [Google Scholar] [CrossRef]
- Bagherzadeh, F.; Mehrani, M.-J.; Basirifard, M.; Roostaei, J. Comparative study on total nitrogen prediction in wastewater treatment plant and effect of various feature selection methods on machine learning algorithms performance. J. Water Process Eng. 2021, 41, 102033. [Google Scholar] [CrossRef]
- Sun, G.; Jiang, C.; Wang, X.; Yang, X. Short-term building load forecast based on a data-mining feature selection and LSTM-RNN method. IEEJ Trans. Electr. Electron. Eng. 2020, 15, 1002–1010. [Google Scholar] [CrossRef]
- Ding, F.; Guo, W.; Dai, L.; Du, J. Attentive batch normalization for lstm-based acoustic modeling of speech recognition. arXiv 2020, arXiv:2001.00129. [Google Scholar]
- Medsker, L.R.; Jain, L. Recurrent neural networks. Des. Appl. 2001, 5, 2. [Google Scholar]
- Choi, E.; Schuetz, A.; Stewart, W.F.; Sun, J. Using recurrent neural network models for early detection of heart failure onset. J. Am. Med. Inform. Assoc. 2017, 24, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Cho, Y.K. Effective inertial sensor quantity and locations on a body for deep learning-based worker’s motion recognition. Autom. Constr. 2020, 113, 103126. [Google Scholar] [CrossRef]
- Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [Google Scholar] [CrossRef]
- Porta, M.; Kim, S.; Pau, M.; Nussbaum, M.A. Classifying diverse manual material handling tasks using a single wearable sensor. Appl. Ergon. 2021, 93, 103386. [Google Scholar] [CrossRef]
- Qu, B.; Mou, Q.; Zhou, Z.; Xie, Y.; Li, Y.; Chen, B. Triboelectric Sensors Based on Glycerol/PVA Hydrogel and Deep Learning Algorithms for Neck Movement Monitoring. ACS Appl. Mater. Interfaces 2025, 17, 12862–12874. [Google Scholar] [CrossRef]
- Liu, D.; Wen, Y.; Xie, Z.; Zhang, M.; Wang, Y.; Feng, Q.; Cheng, Z.; Lu, Z.; Mao, Y.; Yang, H. Self-Powered, Flexible, Wireless and Intelligent Human Health Management System Based on Natural Recyclable Materials. ACS Sens. 2024, 9, 6236–6246. [Google Scholar] [CrossRef]
- Chollet, F. Keras: Deep Learning Library for Theano and Tensorflow. 2015. Available online: https://keras.io/ (accessed on 20 January 2021).
- Greff, K.; Srivastava, R.K.; Koutník, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 2016, 28, 2222–2232. [Google Scholar] [CrossRef]
- Koskimäki, H.; Siirtola, P. Accelerometer vs. Electromyogram in Activity Recognition. ADCAIJ Adv. Distrib. Comput. Artif. Intell. J. 2016, 5, 31. [Google Scholar] [CrossRef]
- Lipton, Z.C.; Kale, D.C.; Elkan, C.; Wetzel, R. Learning to diagnose with LSTM recurrent neural networks. arXiv 2015, arXiv:1511.03677. [Google Scholar]
- Ho, B.-J.; Liu, R.; Tseng, H.-Y.; Srivastava, M. Myobuddy: Detecting barbell weight using electromyogram sensors. In Proceedings of the 1st Workshop on Digital Biomarkers, Niagara Falls, NY, USA, 23 June 2017. [Google Scholar]
- Visconti, P.; Gaetani, F.; Zappatore, G.; Primiceri, P. Technical features and functionalities of Myo armband: An overview on related literature and advanced applications of myoelectric armbands mainly focused on arm prostheses. Int. J. Smart Sens. Intell. Syst. 2018, 11, 1–25. [Google Scholar] [CrossRef]
- Bao, X.; Howard, M.; Niazi, I.K.; Kamavuako, E.N. Comparison between Embroidered and Gel Electrodes on ECG-Derived Respiration Rate. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020. [Google Scholar]
- Meyer, B.M.; Tulipani, L.J.; Gurchiek, R.D.; Allen, D.A.; Adamowicz, L.; Larie, D.; Solomon, A.J.; Cheney, N.; McGinnis, R. Wearables and deep learning classify fall risk from gait in multiple sclerosis. IEEE J. Biomed. Health Inform. 2020, 25, 1824–1831. [Google Scholar] [CrossRef]
- Astrand, P.; Hultman, E.; Juhlin-Dannfelt, A.; Reynolds, G. Disposal of lactate during and after strenuous exercise in humans. J. Appl. Physiol. 1986, 61, 338–343. [Google Scholar] [CrossRef]
SL. No. | Activities |
---|---|
1 | Walking |
2 | Carrying or Positioning Scaffold Frame |
3 | Carrying Leveling Jacks |
4 | Inserting and Adjusting Leveling Jacks |
5 | Carrying Crossbars |
6 | Installing Crossbars |
7 | Hammering |
8 | Wrenching |
9 | Carrying and Dragging baseboard |
10 | Installing Baseboard on Different Level |
11 | Carrying Guardrail |
12 | Dragging Guardrail |
13 | Installing Guardrail |
14 | Going Up and Down Vertical Ladder |
Features Extracted from Raw Data | ||
---|---|---|
Dataset | Raw Features | Statistical Features |
Acceleration | ax, ay, az, ACC | sum, avg, min, max, median, stdev, cv, var, percentiles (5, 10, 25, 75, 90, 95), skew, kurtosis |
Gyroscope | gx, gy, gz, GYRO | |
EMG | EMG1, EMG2, EMG3, EMG4, EMG4, EMG5, EMG6, EMG7, EMG8, EMGsum | |
ACC, GYRO, EMGsum | Lag Feature, Rolling Mean | Shift (1), rolling (window = 3) |
Features Selected for Proposed Model | ||
Acc_mean, EMGsum_lag1, Gyro_mean, az_per50, az_median, az_avg, az_per25, az_sum, az_per75, az_per10, az_per90, az_per95, az_per5, az_max, ax_max, gz_stdev, ax_per95, gz_min, gz_max, ax_stdev, gz_per95, ax_per90, ay_stdev, gz_per5, az_min, gz_per90, gz_var, gx_stdev, gz_per10, gx_max, ax_per75, gx_min, gy_stdev, res_gyro_max, gy_max, ay_var, res_acc_skew, res_gyro_per95, gy_min, res_gyro_avg, res_gyro_sum, ay_min, ax_sum, ax_var, gx_var, res_gyro_median, res_gyro_per50, res_gyro_stdev, res_gyro_per90, gx_per5, gy_per95, gz_per75, az_skew, EMG7_per25, ax_skew, res_acc_max, res_gyro_per75, gy_per5, gx_per95,ax_avg, res_acc_per95, ax_median, ax_per50, EMG8_per25, EMG8_per75, gy_per10, EMGsum_var, res_gyro_per25, gy_per90 |
Model | R | R2 | MAE | MSE | RMSE | MAPE |
---|---|---|---|---|---|---|
All Participants Data | 0.895 | 0.800 | 0.757 | 1.581 | 1.257 | 10% |
Subject#1 as Test Data | 0.866 | 0.750 | 1.264 | 2.838 | 1.685 | 16% |
Unseen Data of All Participants | 0.833 | 0.695 | 1.236 | 2.525 | 1.589 | 13% |
Participant | Measured VO2 | Estimated VO2 | Difference | |||
---|---|---|---|---|---|---|
Weight (Lbs.) | mL/kg/min | L/min | mL/kg/min | L/min | ||
Participant—1 | 75 | 9.15 | 0.69 | 9.33 | 0.71 | −0.18 |
Participant—2 | 74.25 | 7.67 | 0.81 | 8.27 | 0.78 | −0.60 |
Participant—3 | 73 | 9.26 | 0.68 | 9.19 | 0.70 | 0.07 |
Participant—4 | 85 | 8.24 | 0.96 | 8.63 | 0.91 | −0.39 |
Participant—5 | 77.70 | 5.95 | 0.88 | 7.09 | 0.83 | −1.13 |
Participant—6 | 75 | 9.35 | 0.84 | 9.33 | 0.80 | 0.02 |
Participant—7 | 63 | 12.80 | 0.62 | 11.67 | 0.62 | 1.13 |
Participant—8 | 93 | 8.53 | 0.82 | 8.70 | 0.86 | −0.17 |
Participant—9 | 81 | 8.90 | 0.89 | 9.02 | 0.85 | −0.12 |
Participant—10 | 70 | 11.98 | 0.67 | 10.94 | 0.68 | 1.04 |
Average | 76.70 | 9.18 | 0.79 | 9.22 | 0.77 | −0.03 |
SD | 8.25 | 1.97 | 0.11 | 1.30 | 0.09 | 0.68 |
Sensor Combination | Model | R | R-Square | MAE | MSE | RMSE | MAPE |
---|---|---|---|---|---|---|---|
IMU + EMG | LSTM | 0.871 | 0.760 | 1.005 | 1.905 | 1.380 | 11% |
BiLSTM | 0.895 | 0.800 | 0.757 | 1.581 | 1.257 | 10% | |
GRU | 0.817 | 0.667 | 1.299 | 2.639 | 1.624 | 18% | |
IMU | LSTM | 0.776 | 0.603 | 1.509 | 3.143 | 1.773 | 21% |
BiLSTM | 0.887 | 0.787 | 0.936 | 1.687 | 1.299 | 11% | |
GRU | 0.469 | 0.220 | 2.001 | 6.173 | 2.485 | 22% | |
EMG | LSTM | 0.797 | 0.636 | 1.252 | 2.870 | 1.694 | 16% |
BiLSTM | 0.816 | 0.667 | 1.082 | 2.627 | 1.621 | 13% | |
GRU | 0.793 | 0.629 | 1.254 | 2.922 | 1.709 | 14% |
Study | Activities | Activity Type | No. of Sensors | Sensor Signals | Sensor Location |
---|---|---|---|---|---|
The proposed Study | Scaffold Building | Light—Heavy | 1 | IMU EMG | Forearm |
Zignoli et al. [47] | Cycling Exercise | Light—Moderate | 2 | Heart Rate, Garmin Vector Power Meter | Foot |
Shandhi et al. [16] | Treadmill Walking | Light—Moderate | 1 | Seismocardiogram Electrocardiogram Atmospheric Pressure | Mid-Sternum |
Borror et al. [43] | Treadmill | Light—Moderate | 2 | Heart Rate Garmin Vector Power Meter | Chest Foot |
Lu et al. [46] | Office Painting Postal Delivery Meat Cutting Lifting Tasks | Light—Heavy | 8 | Electrocardiogram Accelerometer | Chest Wrist Thigh |
Beltrame et al. [45] | Daily Living Activities Controlled Walking | Light—Moderate | 3 | Electrocardiogram Accelerometer Respiratory Bands | Chest Hip |
Altini et al. [44] | Daily Living Activities | Light—Moderate | 4 | Electrocardiogram, Accelerometer | Chest |
Study | Activities | Model | R2 | RMSE |
---|---|---|---|---|
The proposed Study | Scaffold Building | BiLSTM | 0.80 | 1.26 |
Zignoli et al. [47] | Cycling Exercise | LSTM | 0.89 | N/A |
Shandhi et al. [16] | Treadmill Walking | Xgboost | Treadmill—0.77 Outdoor Walk—0.64 | Treadmill (3.68 ± 0.98) Outdoor Walk (4.30 ± 1.47) |
Borror et al. [43] | Treadmill | ANN | 0.91 | N/A |
Lu et al. [46] | Office Painting Postal Delivery Meat Cutting Lifting Tasks | MLP | N/A | Office—0.86 Painting—1.69 Postal Delivery—2.36 Meat Cutting—1.62 Lifting—3.88 |
Beltrame et al. [45] | Daily Living Activities Controlled Walking | Random Forest | Daily Living Activities—0.75 Random Walking—0.48 | N/A |
Altini et al. [44] | Daily Living Activities | Linear, Exponential Logistic | N/A | 4.38 ± 0.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bangaru, S.S.; Wang, C.; Aghazadeh, F.; Muley, S.; Willoughby, S. Oxygen Uptake Prediction for Timely Construction Worker Fatigue Monitoring Through Wearable Sensing Data Fusion. Sensors 2025, 25, 3204. https://doi.org/10.3390/s25103204
Bangaru SS, Wang C, Aghazadeh F, Muley S, Willoughby S. Oxygen Uptake Prediction for Timely Construction Worker Fatigue Monitoring Through Wearable Sensing Data Fusion. Sensors. 2025; 25(10):3204. https://doi.org/10.3390/s25103204
Chicago/Turabian StyleBangaru, Srikanth Sagar, Chao Wang, Fereydoun Aghazadeh, Shashank Muley, and Sueed Willoughby. 2025. "Oxygen Uptake Prediction for Timely Construction Worker Fatigue Monitoring Through Wearable Sensing Data Fusion" Sensors 25, no. 10: 3204. https://doi.org/10.3390/s25103204
APA StyleBangaru, S. S., Wang, C., Aghazadeh, F., Muley, S., & Willoughby, S. (2025). Oxygen Uptake Prediction for Timely Construction Worker Fatigue Monitoring Through Wearable Sensing Data Fusion. Sensors, 25(10), 3204. https://doi.org/10.3390/s25103204