A Corner Detection Method for Noisy Checkerboard Images
Abstract
1. Introduction
2. Checkerboard Corner Detection
2.1. Image Preprocessing
2.2. Image Corner Extraction
2.3. Checkerboard Corner Filtering
2.4. Standard Checkerboard Corner Grid Generation
2.5. Checkerboard Corner Merging and Completion
3. Experimental Results and Analysis
3.1. Precision Comparison Experiment
3.2. Lighting Condition Experiment
3.3. Noise Level Experiment
3.4. Comparative Analysis of Algorithms and Experimental Results
4. Conclusions
5. Author Statement
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krim, H.; Ben Hamza, A. Geometric Methods in Signal and Image Analysis; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Liu, Y.; Zhang, L.; Ai, H.; Xu, B.; Sun, Y.; Fan, Z. Progress and Prospect of 3D Reconstruction Based on Light Field Cameras. Acta Electron. Sin. 2022, 50, 1774–1792. [Google Scholar]
- Rezaei, S.; Arefi, H. Evaluation of Network Design and Solutions of Fisheye Camera Calibration for 3D Reconstruction. Sensors 2025, 25, 1789. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, B.; Huang, F.; Gao, H. Binocular Infrared Camera Calibration Based on Calibration Checkerboard. J. Phys. Conf. Ser. 2019, 1345, 032014. [Google Scholar] [CrossRef]
- Li, D.; Wang, G.; Liu, J.; Fan, H.; Li, B. Joint Internal and External Parameters Calibration of Optical Compound Eye Based on Random Noise Calibration Pattern. J. Electron. Inf. Technol. 2024, 46, 2898–2907. [Google Scholar]
- Wang, T.; Wang, L.; Zhang, W.; Duan, X.; Wang, W. Design of infrared target system with Zhang Zhengyou calibration method. Opt. Precis. Eng. 2019, 27, 1828–1835. [Google Scholar] [CrossRef]
- Chen, J.; Liu, X.; Du, L.; Song, B.; Sun, X. Image Noise Simulation and Verification of Area Array CMOS Sensor. Acta Opt. Sin. 2024, 44, 1228007. [Google Scholar]
- Liu, Z.; Xi, Z. Noise Processing of High Dynamic Image Synthesis Based on Multiple Exposure. Electron. Sci. Technol. 2016, 29, 90. [Google Scholar]
- Yu, Z.; Bu, T.; Zhang, Y.; Jia, S.; Huang, T.; Liu, J. Robust Decoding of Rich Dynamical Visual Scenes With Retinal Spikes. IEEE Trans. Neural Netw. Learn. Syst. 2025, 36, 3396–3409. [Google Scholar] [CrossRef]
- Liu, Z.; Guan, B.; Shang, Y.; Bian, Y.; Sun, P.; Yu, Q. Stereo Event-Based, 6-DOF Pose Tracking for Uncooperative Spacecraft. IEEE Trans. Geosci. Remote Sens. 2025, 63, 5607513. [Google Scholar] [CrossRef]
- Chen, H.; He, H.; Xiao, H.; Huang, J. A fast and automatic mosaic method for high-resolution satellite images. In Proceedings of the International Conference on Intelligent Earth Observing and Applications, Guilin, China, 23–24 October 2015; Volume 98080A. [Google Scholar]
- Yang, Y.; Mu, L.; Liu, J.; Zeng, X.; Liu, Y.; Zou, X.; Li, C. A Fast Mosaicing Method of High Resolution Image Based on Chang’E 2 data. Bull. Surv. Mapp. 2015, 1, 115–120. [Google Scholar]
- Liu, T.; Song, Y.; Li, J.; Zhao, X. Improved Algorithm for High-Resolution Image Stitching Based on ORB Features. Laser Optoelectron. Prog. 2021, 58, 0810004. [Google Scholar]
- Xia, M.; Mao, Q.; Wang, G.; Fan, T. A subway tunnel image stitching method based on point cloud mapping relationships and high-resolution image. Eng. Res. Express 2024, 6, 025102. [Google Scholar] [CrossRef]
- Li, K.; Chen, Y.; Liu, J.; Mu, X. Survey of Deep Learning-Based Object Detection Algorithms. Comput. Eng. 2022, 48, 1–12. [Google Scholar]
- Elliott, J.; Khandare, S.; Butt, A.A.; Smallcomb, M.; Vidt, M.E.; Simon, J.C. Automated tissue strain calculations using Harris corner detection. Ann. Biomed. Eng. 2022, 50, 564–574. [Google Scholar] [CrossRef]
- Luo, C.; Sun, X.; Sun, X.; Song, J. Improved Harris corner detection algorithm based on Canny edge detection and gray difference preprocessing. J. Phys. Conf. Ser. 2021, 1971, 012088. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z. SUSAN multi-scale corner detection based on wavelet transform. Opto-Electron. Eng. 2009, 36, 100–105. [Google Scholar]
- Deng, M.; Yang, F.; Chen, Q.; Wang, J.; Sun, S.; Qi, B. A multi-scale refinement corner detection algorithm based on Shi-Harris. Digit. Signal Process. 2025, 161, 105137. [Google Scholar] [CrossRef]
- Liu, Y.; Li, T. Reaserch of the improvement of Zhang’s camera calibration method. Opt. Tech. 2014, 40, 565. [Google Scholar]
- Ma, A.; Lu, G. Robust image corner detection based on the chord-to-point distance accumulation technique. IEEE Trans. Multimed. 2008, 10, 1059–1072. [Google Scholar]
- Geiger, A.; Moosmann, F.; Car, Ö.; Schuster, B. Automatic camera and range sensor calibration using a single shot. In Proceedings of the IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 3936–3943. [Google Scholar]
- Yang, W.; Guo, S.; Li, X.; Li, H. Checkerboard corner detection based on Hough transform and circular template. Laser Optoelectron. Prog. 2020, 57, 181510. [Google Scholar] [CrossRef]
- Wu, M.; Wu, J.; Ma, S.; Yang, K.; Yang, P. Checkerboard corner detection based on corner gray distribution feature. Laser Optoelectron. Prog. 2020, 57, 109–116. [Google Scholar]
- Chen, Y.; Huang, F.; Shi, F.; Liu, B.; Yu, H. Plane chessboard-based calibration method for a LWIR ultra-wide-angle camera. Appl. Opt. 2019, 58, 744–751. [Google Scholar] [CrossRef]
- Dan, X.; Gong, Q.; Zhang, M.; Li, T.; Li, G.; Wang, Y. Chessboard corner detection based on EDLines algorithm. Sensors 2022, 22, 3398. [Google Scholar] [CrossRef]
- Donné, S.; DeVylder, J.; Goossens, B.; Philips, W. MATE: Machine Learning for Adaptive Calibration Template Detection. Sensors 2016, 16, 1858. [Google Scholar] [CrossRef]
- Du, X.; Jiang, B.; Wu, L.; Xiao, M. Checkerboard corner detection method based on neighborhood linear fitting. Appl. Opt. 2023, 62, 7736–7743. [Google Scholar] [CrossRef]
- Wang, F.; Luo, Y.; Duan, G. Checkerboard Subpixel Corner Detection Based on Local Area Intensity Response and LoG Response. In Proceedings of the 2024 6th International Conference on Natural Language Processing (ICNLP), Xi’an, China, 22 March 2024; pp. 392–396. [Google Scholar]
- Wang, X.; Guo, H.; Wang, Y.; Jin, B. Research on BOTDR noise suppression method based on two-dimensional image Gaussian filter. Opt. Tech. 2024, 50, 513–521. [Google Scholar]
- Said, K.A.M.; Jambek, A.B. Analysis of image processing using morphological erosion and dilation. J. Phys. Conf. Ser. 2021, 2071, 012033. [Google Scholar] [CrossRef]
- Rufli, M.; Scaramuzza, D.; Siegwart, R. Automatic detection of checkerboards on blurred and distorted images. In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; pp. 3121–3126. [Google Scholar]
- Zhou, M.; Zhou, Y.; Yang, D.; Song, K. Remote sensing image classification based on Canny operator enhanced edge features. Sensors 2024, 24, 3912. [Google Scholar] [CrossRef]
- Meng, C.; Cai, Q.; Wu, L.; Guan, S.; Wang, Y.; Wang, T. A fast X-corner detection method based on block-search strategy. Adv. Mech. Eng. 2019, 11, 168781401983414. [Google Scholar] [CrossRef]
- Wang, J.; Ji, X.; Zhang, X.; Sun, Z.; Wang, T. Real-time robust individual X point localization for stereoscopic tracking. Pattern Recognit. Lett. 2018, 112, 138–144. [Google Scholar] [CrossRef]
- Ye, C. Mutual information-based circular template matching for image registration. Korean J. Remote Sens. 2014, 30, 547–557. [Google Scholar] [CrossRef]
Algorithm | Precision (%) | Recall (%) | Bias (pixel) | Average Runtime (s) |
---|---|---|---|---|
Zhang | 98.9547 | 90.2476 | 0.71278 | 16~17 |
Ref. [21] | 71.2992 | 95.356 | 0.87669 | 4~5 |
Ref. [22] | 97.9876 | 72.6006 | 0.9348 | 5~6 |
Ref. [24] | 95.0743 | 84.5201 | 1.3075 | 9~10 |
Ours | 98.366 | 94.7368 | 0.66636 | 8~9 |
Algorithm | Correct Corners/Detected Corners | |||
---|---|---|---|---|
High-Intensity Lighting | Normal Lighting | Low-Intensity Lighting | Uneven Lighting | |
Zhang | 323/323 | 314/317 | — | 301/303 |
Ref. [21] | 323/419 | 316/420 | 322/484 | 305/470 |
Ref. [22] | 311/312 | 288/299 | 257/257 | 273/277 |
Ref. [24] | 295/297 | 274/317 | 225/230 | 191/215 |
Ours | 323/323 | 323/323 | 323/323 | 285/285 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Shan, L.; Feng, J.; Wang, S. A Corner Detection Method for Noisy Checkerboard Images. Sensors 2025, 25, 3180. https://doi.org/10.3390/s25103180
Liu H, Shan L, Feng J, Wang S. A Corner Detection Method for Noisy Checkerboard Images. Sensors. 2025; 25(10):3180. https://doi.org/10.3390/s25103180
Chicago/Turabian StyleLiu, Hui, Ligen Shan, Jiahao Feng, and Shuanghao Wang. 2025. "A Corner Detection Method for Noisy Checkerboard Images" Sensors 25, no. 10: 3180. https://doi.org/10.3390/s25103180
APA StyleLiu, H., Shan, L., Feng, J., & Wang, S. (2025). A Corner Detection Method for Noisy Checkerboard Images. Sensors, 25(10), 3180. https://doi.org/10.3390/s25103180