Fusion Ranging Method of Monocular Camera and Millimeter-Wave Radar Based on Improved Extended Kalman Filtering
Abstract
:1. Introduction
1.1. Research Background and Motivation
1.2. Related Work
1.3. Our Contributions
- A monocular ranging model is constructed based on a target detection algorithm after achieving spatio-temporal calibration between the radar and camera. A pixel–distance dual-constraint matching algorithm is employed to achieve effective cross-modal target association between the two sensors.
- An adaptive fuzzy extended Kalman filter (AFEKF) algorithm is proposed. This algorithm dynamically updates the measurement error covariance matrix based on the target’s distance variation and adaptively adjusts the sensor fusion weights in each frame according to the variations in sensor measurements. The effectiveness of the proposed algorithm in improving fusion accuracy for dynamic target ranging is validated through experiments.
2. Multi-Sensor Spatio-Temporal Calibration and Monocular Ranging Model Construction
2.1. Temporal Calibration
2.2. Spatial Calibration
2.3. Monocular Ranging Model Based on Yolov5
3. Target Matching
3.1. Determination of Radar Projection Area
3.2. Dual-Constraint Target Matching Algorithm
4. Improved Data Fusion Algorithm
- Dynamic error functions are proposed to correct the system’s error covariance matrix, thereby more accurately reflecting the real-time variations in the errors;
- Adaptive weight allocation formulae are proposed to add weight to the measurement inputs and Kalman gain in the update step, thereby optimizing the information weight distribution during the fusion process
4.1. Motion Model Construction
4.2. Measurement Error Functions
4.3. Adaptive Weighting Allocation Formulae
4.4. Improved Extended Kalman Filter
4.5. Date Fusion Algorithm Process
- Calculate the measurement error of each sensor based on Equation (25).
- Compute the local Kalman gain of each sensor based on Equation (26).
- Using the weights obtained in Step 4, perform weighted fusion of all Kalman gains and measurements according to Equations (28) and (29) to obtain the global Kalman gain A and the global measurement Z.
Algorithm 1. Adaptive Fuzzy Extended Kalman Filter |
|
5. Experiment
5.1. Experiment Hypotheses
- AFEKF can adaptively adjust the weight allocation based on variations in sensor measurements through an adaptive fuzzy weighting mechanism, thereby enhancing the adaptability of the fusion process to changes in sensor data.
- In the task of fusing ranging data for dynamic targets, the AFEKF algorithm achieves higher fusion accuracy compared to the EKF and IVW algorithms.
5.2. Experimental Environment and Equipment
5.3. Dynamic Error Functions Construction
5.4. Improved Extended Kalman Filter Verification
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Symbol | Description |
---|---|
k | Discrete time index representing the k-th time step |
State transition matrix of the target at time step k | |
Initial state vector of the target | |
H | Observation Matrix |
Initial state estimation error covariance matrix | |
State estimation error covariance matrix during the iterative process | |
Q | Process noise covariance matrix |
a,b,c | Parameters to be fitted in the distance error function |
N | Total number of measurement data samples |
i | Index of the sensor type in the fusion system |
n | Number of sensor types |
Infinitesimal positive constant used for numerical stability |
Acronym | Full Term |
---|---|
MMW | Millimeter-wave |
AFEKF | Adaptive Fuzzy Extended Kalman Filter |
EKF | Extended Kalman Filter |
RMSE | Root Mean Square Error |
IVW | Inverse Variance Weighting |
ROI | Region of Interest |
IOU | Intersection over Union |
References
- Badue, C.; Guidolini, R.; Carneiro, R.-V.; Azevedo, P.; Cardoso, V.-B.; Forechi, A.; Jesus, L.; Berriel, R.; Paixão, T.-M.; Mutz, F.; et al. Self-Driving Cars: A Survey. Expert Syst. Appl. 2021, 165, 113816. [Google Scholar] [CrossRef]
- Yeong, D.J.; Velasco-Hernandez, G.; Barry, J.; Walsh, J. Sensor and Sensor Fusion Technology in Autonomous Vehicles: A Review. Sensors 2021, 21, 2140. [Google Scholar] [CrossRef]
- Lu, Y.; Ma, H.; Smart, E.; Yu, H. Real-Time Performance-Focused Localization Techniques for Autonomous Vehicle: A Review. IEEE Trans. Intell. Transp. Syst. 2022, 23, 6082–6100. [Google Scholar] [CrossRef]
- Qi, Y.; He, B.; Wang, R.; Wang, L.; Xu, Y. Hierarchical Motion Planning for Autonomous Vehicles in Unstructured Dynamic Environments. IEEE Robot. Autom. Lett. 2023, 8, 496–503. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, H.; Zhu, X.; Song, X.; Li, H.; Tao, W. LIF-Seg: LiDAR and Camera Image Fusion for 3D LiDAR Semantic Segmentation. IEEE Trans. Multimed. 2024, 26, 1158–1168. [Google Scholar] [CrossRef]
- Wang, T.; Wu, S.; Cao, L.; Du, K.; Zhao, Z.; He, Z. A Novel Possibilistic Clustering Algorithm for Measurement Data of Vehicle MMW Radar. IEEE Sens. J. 2023, 23, 17103–17116. [Google Scholar] [CrossRef]
- Amosa, T.-I.; Sebastian, P.; Izhar, L.-I.; Ibrahim, O.; Ayinla, L.-S.; Bahashwan, A.-A.; Bala, A.; Samaila, Y.-A. Multi-Camera Multi-Object Tracking: A Review of Current Trends and Future Advances. Neurocomputing 2023, 552, 126558. [Google Scholar] [CrossRef]
- Ye, Q.; Qian, C.; Yang, G.; Wang, F.; Qian, W.; Li, Z. Monocular ranging system based on space geometry. In Proceedings of the 2019 13th Optics and Photonics for Information Processing XIII (OPO), San Diego, CA, USA, 6 September 2019; pp. 249–260. [Google Scholar]
- Zhe, T.; Huang, L.; Wu, Q.; Zhang, J.; Pei, C.; Li, L. Inter-Vehicle Distance Estimation Method Based on Monocular Vision Using 3D Detection. IEEE Trans. Veh. Technol. 2020, 69, 4907–4919. [Google Scholar] [CrossRef]
- Tang, J.; Li, J. End-to-End Monocular Range Estimation for Forward Collision Warning. Sensors 2020, 20, 5941. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Chen, X.; Wang, N.; Liu, Y. Depthformer: Exploiting Long-Range Correlation and Local Information for Accurate Monocular Depth Estimation. Mach. Intell. Res. 2023, 20, 837–854. [Google Scholar] [CrossRef]
- Zhao, H.; Qiao, X.; Ma, Y.; Tafazolli, R. Transformer-Based Self-Supervised Monocular Depth and Visual Odometry. IEEE Sens. J. 2023, 23, 1436–1446. [Google Scholar] [CrossRef]
- Gao, T.; Li, M.; Xue, L.; Bao, J.; Lian, H.; Li, T. Height-Variable Monocular Vision Ranging Technology for Smart Agriculture. IEEE Access 2023, 11, 92847–92856. [Google Scholar] [CrossRef]
- Du, Y.; Qin, B.; Zhao, C.; Zhu, Y.; Cao, J.; Ji, Y. A Novel Spatio-Temporal Synchronization Method of Roadside Asynchronous MMW Radar-Camera for Sensor Fusion. IEEE Trans. Intell. Transp. Syst. 2022, 23, 22278–22289. [Google Scholar] [CrossRef]
- Zhou, Y.; Dong, Y.; Hou, F.; Wu, J. Review on Millimeter-Wave Radar and Camera Fusion Technology. Sustainability 2022, 14, 5114. [Google Scholar] [CrossRef]
- Venon, A.; Dupuis, Y.; Vasseur, P.; Merriaux, P. Millimeter Wave FMCW RADARs for Perception, Recognition and Localization in Automotive Applications: A Survey. IEEE Trans. Intell. Veh. 2022, 7, 533–555. [Google Scholar] [CrossRef]
- Cai, X.; Giallorenzo, M.; Sarabandi, K. Machine Learning-Based Target Classification for MMW Radar in Autonomous Driving. IEEE Trans. Intell. Veh. 2021, 6, 678–689. [Google Scholar] [CrossRef]
- Abdu, F.-J.; Zhang, Y.; Fu, M.; Li, Y.; Deng, Z. Application of Deep Learning on Millimeter-Wave Radar Signals: A Review. Sensors 2021, 21, 1951. [Google Scholar] [CrossRef]
- Richter, Y.; Balal, N.; Pinhasi, Y. Neural-Network-Based Target Classification and Range Detection by CW MMW Radar. Remote Sens. 2023, 15, 4553. [Google Scholar] [CrossRef]
- Zhou, T.; Yang, M.; Jiang, K.; Wong, H.; Yang, D. MMW Radar-Based Technologies in Autonomous Driving: A Review. Sensors 2020, 20, 7283. [Google Scholar] [CrossRef]
- Hsu, Y.-W.; Lai, Y.-H.; Zhong, K.-Q.; Yin, T.-K.; Perng, J.-W. Developing an On-Road Object Detection System Using Monovision and Radar Fusion. Energies 2020, 13, 116. [Google Scholar] [CrossRef]
- Liu, P.; Yu, G.; Wang, Z.; Zhou, B.; Chen, P. Object Classification Based on Enhanced Evidence Theory: Radar–Vision Fusion Approach for Roadside Application. IEEE Trans. Instrum. Meas. 2022, 71, 5006412. [Google Scholar] [CrossRef]
- Sun, C.; Li, Y.; Li, H.; Xu, E.; Li, Y.; Li, W. Forward Collision Warning Strategy Based on Millimeter-Wave Radar and Visual Fusion. Sensors 2023, 23, 9295. [Google Scholar] [CrossRef] [PubMed]
- Lv, P.; Wang, B.; Cheng, F.; Xue, J. Multi-Objective Association Detection of Farmland Obstacles Based on Information Fusion of Millimeter Wave Radar and Camera. Sensors 2023, 23, 230. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yu, G.; Zhou, B.; Wang, P.; Wu, X. A Train Positioning Method Based-On Vision and Millimeter-Wave Radar Data Fusion. IEEE Trans. Intell. Transp. Syst. 2022, 23, 4603–4613. [Google Scholar] [CrossRef]
- Cui, F.; Zhang, Q.; Wu, J.; Song, Y.; Xie, Z.; Song, C. Online Multipedestrian Tracking Based on Fused Detections of Millimeter Wave Radar and Vision. IEEE Sens. J. 2023, 23, 15702–15712. [Google Scholar] [CrossRef]
- Chang, S.; Zhang, Y.; Zhang, F.; Zhao, X.; Huang, S.; Feng, Z.; Wei, Z. Spatial Attention Fusion for Obstacle Detection Using MmWave Radar and Vision Sensor. Sensors 2020, 20, 956. [Google Scholar] [CrossRef]
- Bergman, M.; Delleur, J. Kalman Filter Estimation and Prediction of Daily Streamflows II. Application to the Potomac River. J. Am. Water Resour. Assoc. 1985, 21, 827–832. [Google Scholar] [CrossRef]
- Djuric, P.-M.; Kotecha, J.-H.; Zhang, J.; Huang, Y.; Ghirmai, T.; Bugallo, M.-F. Particle Filtering. IEEE Signal Process. Mag. 2003, 20, 19–38. [Google Scholar] [CrossRef]
- Hoang, G.-M.; Denis, B.; Härri, J.; Slock, D. Bayesian Fusion of GNSS, ITS-G5 and IR-UWB Data for Robust Cooperative Vehicular Localization. Comptes Rendus Phys. 2019, 20, 218–227. [Google Scholar] [CrossRef]
- Wu, Y.; Kaiyuan, Z.; Bolin, G.; Ming, C.; Yifeng, W. Roadside Multi-Sensor Fusion Based on Adaptive Extended Kalman Filter. J. Automot. Saf. Energy 2021, 12, 522. [Google Scholar] [CrossRef]
- Deng, L.; Zhou, T.; Yin, B.; Guo, Z.; Sun, Q.; Wen, H. An Improved Fusion Positioning Method for Millimeter-Wave Radar and Stereo Camera. IEEE Sens. J. 2024, 24, 28028–28035. [Google Scholar] [CrossRef]
- Dong, X.; Zhuang, B.; Mao, Y.; Liu, L. Radar camera fusion via representation learning in autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), San Diego, CA, USA, 20–25 June 2021; pp. 1672–1681. [Google Scholar]
- Oishi, Y.; Matsunami, I. Radar and Camera Data Association Algorithm for Sensor Fusion. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2017, 100, 510–514. [Google Scholar] [CrossRef]
- Kim, K.; Kim, J.; Kim, J. Robust Data Association for Multi-Object Detection in Maritime Environments Using Camera and Radar Measurements. IEEE Robot. Autom. Lett. 2021, 6, 5865–5872. [Google Scholar] [CrossRef]
- Zhang, Z. A Flexible New Technique for Camera Calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [Google Scholar] [CrossRef]
- Terven, J.; Córdova-Esparza, D.-M.; Romero-González, J.-A. A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS. Mach. Learn. Knowl. Extr. 2023, 5, 1680–1716. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, Z.; Wu, J.; Tian, Y.; Tang, H.; Guo, X. Real-Time Vehicle Detection Based on Improved YOLO v5. Sustainability 2022, 14, 12274. [Google Scholar] [CrossRef]
- Jung, H.-K.; Choi, G.-S. Improved YOLOv5: Efficient Object Detection Using Drone Images under VarIOUs Conditions. Appl. Sci. 2022, 12, 7255. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; Dong, Z.; Dong, Z.; Gao, M. Improved YOLOv5 Network for Real-Time Multi-Scale Traffic Sign Detection. Neural Comput. Appl. 2023, 35, 7853–7865. [Google Scholar] [CrossRef]
- Cai, G.; Wang, X.; Shi, J.; Lan, X.; Su, T.; Guo, Y. Vehicle Detection Based on Information Fusion of mmWave Radar and Monocular Vision. Electronics 2023, 12, 2840. [Google Scholar] [CrossRef]
- Guo, H. A Simple Algorithm for Fitting a Gaussian Function [DSP Tips and Tricks]. IEEE Signal Process. Mag. 2011, 28, 134–137. [Google Scholar] [CrossRef]
- Sengupta, A.; Cheng, L.; Cao, S. Robust Multiobject Tracking Using Mmwave Radar-Camera Sensor Fusion. IEEE Sens. Lett. 2022, 6, 5501304. [Google Scholar] [CrossRef]
- Khodarahmi, M.; Maihami, V. A Review on Kalman Filter Models. Arch. Comput. Methods Eng. 2023, 30, 727–747. [Google Scholar] [CrossRef]
Step | Mathematical Formulation |
---|---|
World → Camera Coordinates | |
Camera → Image Coordinates | |
Image → Pixel Coordinates |
Actual Distance(m) | MMW Radar Measurement (m) | Camera Measurement (m) |
---|---|---|
5 | 5.04 | 5.02 |
10 | 10.07 | 10.1 |
15 | 15.1 | 15.39 |
20 | 20.13 | 20.47 |
25 | 25.17 | 25.77 |
30 | 30.24 | 31.2 |
35 | 35.33 | 36.7 |
40 | 40.37 | 42.1 |
45 | 45.44 | 47.4 |
50 | 50.51 | 53 |
MMW Radar | Camera | |
---|---|---|
Mean Error(m) | 0.237 | 1.22 |
Camera | Radar | IVW | EKF | AFEKF | |
---|---|---|---|---|---|
Mean RMSE(m) | 1.1524 | 0.2382 | 0.2397 | 0.2752 | 0.2131 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Cui, Q.; Wang, S. Fusion Ranging Method of Monocular Camera and Millimeter-Wave Radar Based on Improved Extended Kalman Filtering. Sensors 2025, 25, 3045. https://doi.org/10.3390/s25103045
Chen Y, Cui Q, Wang S. Fusion Ranging Method of Monocular Camera and Millimeter-Wave Radar Based on Improved Extended Kalman Filtering. Sensors. 2025; 25(10):3045. https://doi.org/10.3390/s25103045
Chicago/Turabian StyleChen, Ye, Qirui Cui, and Shungeng Wang. 2025. "Fusion Ranging Method of Monocular Camera and Millimeter-Wave Radar Based on Improved Extended Kalman Filtering" Sensors 25, no. 10: 3045. https://doi.org/10.3390/s25103045
APA StyleChen, Y., Cui, Q., & Wang, S. (2025). Fusion Ranging Method of Monocular Camera and Millimeter-Wave Radar Based on Improved Extended Kalman Filtering. Sensors, 25(10), 3045. https://doi.org/10.3390/s25103045