Assessment of Surgeons’ Stress Levels with Digital Sensors during Robot-Assisted Surgery: An Experimental Study
Abstract
:1. Background
1.1. Robot-Assisted Surgery
1.2. Ergonomics and Stress in Surgery
2. Methods
2.1. Sensors and Measurements
2.1.1. Heart Rate Measurement
2.1.2. Posture Detection
2.1.3. Hand Movement Tracking
2.2. Tasks and Subjects
- Place all ten rings on the spikes*
- Place as many rings on the spikes as possible within 2 min
- Place as many rings on the spikes as possible within 2 min under disturbance
- Simulator: Place as many rings on the spikes as possible within 2 min**
2.3. Classification and Parameter Tuning
3. Results
3.1. Correlations
3.2. Classification by Supervised Learning
4. Conclusions
4.1. Lessons Learned
4.2. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haidegger, T.; Speidel, S.; Stoyanov, D.; Satava, R.M. Robot-assisted minimally invasive surgery—Surgical robotics in the data age. Proc. IEEE 2022, 110, 835–846. [Google Scholar] [CrossRef]
- Haidegger, T. Taxonomy and Standards in Robotics. In Encyclopedia of Robotics; Marcelo, H., Ang, O.K., Siciliano, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–10. [Google Scholar] [CrossRef]
- Fichtinger, G.; Troccaz, J.; Haidegger, T. Image-guided interventional robotics: Lost in translation? Proc. IEEE 2022, 110, 932–950. [Google Scholar] [CrossRef]
- Nagy, T.D.; Haidegger, T. Performance and capability assessment in surgical subtask automation. Sensors 2022, 22, 2501. [Google Scholar] [CrossRef]
- Jaksa, L.; Azamatov, B.; Nazenova, G.; Alontseva, D.; Tamas, H. State of the art in Medical Additive Manufacturing. Acta Polytech. Hung. 2023, 20. [Google Scholar]
- Orosz, G.; Szabó, R.Z.; Ungi, T.; Barr, C.; Yeung, C.; Fichtinger, G.; Gál, J.; Haidegger, T. Lung Ultrasound Imaging and Image Processing with Artificial Intelligence Methods for Bedside Diagnostic Examinations. Acta Polytech. Hung. 2023, 20, 69–87. [Google Scholar] [CrossRef]
- Pentek, M.; Zrubka, Z.; Gulacsi, L.; Weszl, M.; Czere, J.T.; Tamas, H. 10 pragmatic points to consider when performing a systematic literature review of clinical evidence on digital medical devices. Acta Polytech. Hung. 2023, 20, 110–128. [Google Scholar]
- Pugin, F.; Bucher, P.; Morel, P. History of robotic surgery: From AESOP® and ZEUS® to da Vinci®. J. Visc. Surg. 2011, 148, e3–e8. [Google Scholar] [CrossRef]
- Haidegger, T.; Mai, V.; Mörch, C.; Boesl, D.; Jacobs, A.; Khamis, A.; Lach, L.; Vanderborght, B.; Rao, B.R. Robotics: Enabler and inhibitor of the sustainable development goals. Sustain. Prod. Consum. 2023, 43, 422–434. [Google Scholar] [CrossRef]
- Hölgyesi, Á.; Zrubka, Z.; Gulácsi, L.; Baji, P.; Peter, T.; Kozlovszky, M.; Weszl, M.; Kovács, L.; Péntek, M. Robot-assisted surgery and artificial intelligence-based tumour diagnostics: Social preferences with a representative cross-sectional survey. BMC Med. Inform. Decis. Mak. 2024, 24, 87. [Google Scholar] [CrossRef] [PubMed]
- Houghtaling, M.A.; Fiorini, S.R.; Fabiano, N.; Gonçalves, P.J.; Ulgen, O.; Haidegger, T.; Carbonera, J.L.; Olszewska, J.I.; Murahwi, Z.; Prestes, E. Standardizing an ontology for ethically aligned robotic and autonomous systems. IEEE Trans. Syst. Man Cybern. Syst. 2024, 54, 1791–1804. [Google Scholar] [CrossRef]
- Nagyné Elek, R.; Haidegger, T. Non-technical skill assessment and mental load evaluation in robot-assisted minimally invasive surgery. Sensors 2021, 21, 2666. [Google Scholar] [CrossRef]
- Catchpole, K.; Cohen, T.; Alfred, M.; Lawton, S.; Kanji, F.; Shouhed, D.; Nemeth, L.; Anger, J. Human factors integration in robotic surgery. Hum. Factors 2024, 66, 683–700. [Google Scholar] [CrossRef]
- Nagyné Elek, R.; Haidegger, T. Next in Surgical Data Science: Autonomous Non-Technical Skill Assessment in Minimally Invasive Surgery Training. J. Clin. Med. 2022, 11, 7533. [Google Scholar] [CrossRef]
- Alemzadeh, H.; Raman, J.; Leveson, N.; Kalbarczyk, Z.; Iyer, R.K. Adverse events in robotic surgery: A retrospective study of 14 years of FDA data. PLoS ONE 2016, 11, e0151470. [Google Scholar] [CrossRef] [PubMed]
- Cooper, M.A.; Ibrahim, A.; Lyu, H.; Makary, M.A. Underreporting of robotic surgery complications. J. Healthc. Qual. (JHQ) 2015, 37, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Lechappe, A.; Chollet, M.; Rigaud, J.; Cao, C.G. Assessment of situation awareness during robotic surgery using multimodal data. In Proceedings of the Companion Publication of the 2020 International Conference on Multimodal Interaction, Virtual Event, 25–29 October 2020; pp. 412–416. [Google Scholar]
- Lechappe, A.; Chollet, M.; Rigaud, J.; Cao, C.G. Using Multimodal Data to Predict Surgeon Situation Awareness. In Proceedings of the 21st Congress of the International Ergonomics Association (IEA 2021) Volume V: Methods & Approaches 21, Virtual Event, 13–18 June 2021; Springer: Berlin/Heidelberg, Germany, 2022; pp. 308–316. [Google Scholar]
- van’t Hullenaar, C.D.; Hermans, B.; Broeders, I.A. Ergonomic assessment of the da Vinci console in robot-assisted surgery. Innov. Surg. Sci. 2017, 2, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Takacs, K.; Haidegger, T. Eye Gaze Tracking in Robot-Assisted Surgery: A Systematic Review of Recent Advances and Applications. Acta Polytech. Hung. 2024, 21, 1–19. (In press) [Google Scholar]
- Lux, M.M.; Marshall, M.; Erturk, E.; Joseph, J.V. Ergonomic evaluation and guidelines for use of the daVinci Robot system. J. Endourol. 2010, 24, 371–375. [Google Scholar] [CrossRef]
- Baevsky, R.M.; Chernikova, A.G. Heart rate variability analysis: Physiological foundations and main methods. Cardiometry 2017, 10, 66–76. [Google Scholar] [CrossRef]
- Ali, M.K.; Liu, L.; Chen, J.H.; Huizinga, J.D. Optimizing autonomic function analysis via heart rate variability associated with motor activity of the human colon. Front. Physiol. 2021, 12, 619722. [Google Scholar] [CrossRef]
- Fontanelli, G.A.; Ficuciello, F.; Villani, L.; Siciliano, B. Da Vinci Research Kit: PSM and MTM Dynamic Modelling. 2017. Available online: https://smarts.lcsr.jhu.edu/wp-content/uploads/2017/04/dvrk-identification.pdf (accessed on 29 April 2024).
- OpenCV. ArUco Marker Detection—OpenCV Documentation. 2023. Available online: https://docs.opencv.org/3.4/d9/d6a/group__aruco.html (accessed on 26 January 2024).
- Zheng, B.; Fu, B.; Al-Tayeb, T.A.; Hao, Y.F.; Qayumi, A.K. Mastering instruments before operating on a patient: The role of simulation training in tool use skills. Surg. Innov. 2014, 21, 637–642. [Google Scholar] [CrossRef]
- Fathabadi, F.R.; Grantner, J.L.; Abdel-Qader, I.; Shebrain, S.A. Box-trainer assessment system with real-time multi-class detection and tracking of laparoscopic instruments, using CNN. Acta Polytech. Hung. 2022, 19, 7–27. [Google Scholar] [CrossRef]
- Wilson, M.R.; Poolton, J.M.; Malhotra, N.; Ngo, K.; Bright, E.; Masters, R.S. Development and validation of a surgical workload measure: The surgery task load index (SURG-TLX). World J. Surg. 2011, 35, 1961–1969. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Yu, H.W.; Kwon, H.; Kong, H.J.; Lee, K.E.; Kim, H.C. Evaluation of surgical skills during robotic surgery by deep learning-based multiple surgical instrument tracking in training and actual operations. J. Clin. Med. 2020, 9, 1964. [Google Scholar] [CrossRef] [PubMed]
- Soangra, R.; Sivakumar, R.; Anirudh, E.; Reddy Y, S.V.; John, E.B. Evaluation of surgical skill using machine learning with optimal wearable sensor locations. PLoS ONE 2022, 17, e0267936. [Google Scholar] [CrossRef]
- Vallat, R. Antropy: A Python Library for Entropy Estimation. 2021. Available online: https://github.com/raphaelvallat/antropy (accessed on 26 January 2024).
- D’Ettorre, C.; Mariani, A.; Stilli, A.; y Baena, F.R.; Valdastri, P.; Deguet, A.; Kazanzides, P.; Taylor, R.H.; Fischer, G.S.; DiMaio, S.P.; et al. Accelerating surgical robotics research: A review of 10 years with the da vinci research kit. IEEE Robot. Autom. Mag. 2021, 28, 56–78. [Google Scholar] [CrossRef]
- Nisky, I.; Okamura, A.M.; Hsieh, M.H. Effects of robotic manipulators on movements of novices and surgeons. Surg. Endosc. 2014, 28, 2145–2158. [Google Scholar] [CrossRef]
- Tolvanen, O.; Elomaa, A.P.; Itkonen, M.; Vrzakova, H.; Bednarik, R.; Huotarinen, A. Eye-tracking indicators of workload in surgery: A systematic review. J. Investig. Surg. 2022, 35, 1340–1349. [Google Scholar] [CrossRef] [PubMed]
Metric Group | Metric | Pearson Correlation | p-Value | Significance |
---|---|---|---|---|
Hand movement metrics | Lefthand_std | 0.370 | 0.006 | strong + |
Lefthand_range | 0.288 | 0.037 | strong + | |
Lefthand_total_dist | 0.062 | 0.658 | - | |
Lefthand_avg_speed | 0.173 | 0.216 | - | |
Left_jerk | 0.065 | 0.641 | - | |
Righthand_std | 0.164 | 0.242 | - | |
Righthand_range | 0.042 | 0.767 | - | |
Righthand_total_dist | −0.364 | 0.007 | strong − | |
Righthand_avg_speed | −0.135 | 0.335 | - | |
Right_jerk | 0.001 | 0.993 | - | |
Total_dist_rate | −0.251 | 0.069 | weak − | |
Range_rate | −0.256 | 0.064 | weak − | |
Posture metrics | Elbow_vy | 0.062 | 0.661 | - |
Shoulder_vy | −0.014 | 0.921 | - | |
SURG-TLX metrics | Mental_fatigue | 0.198 | 0.172 | - |
Physical_fatigue | 0.380 | 0.007 | strong + | |
Temporal_demands | 0.084 | 0.567 | - | |
Complexity | 0.223 | 0.124 | - | |
Situational_stress | 0.082 | 0.577 | - | |
Distractions | 0.284 | 0.048 | strong + | |
Manually recorded metrics | Collisions_phantom | −0.124 | 0.396 | - |
Collision_robot_arms | −0.205 | 0.158 | - | |
Rings_placed | 0.194 | 0.182 | - | |
Ring_drops | −0.269 | 0.061 | weak − | |
Spike_color_missed | −0.054 | 0.714 | - |
Target Variable | DT | k-NN | SVM | LR |
---|---|---|---|---|
MF | cv = 11: 0.781818 | cv = 18: 0.712963 | cv = 7: 0.734694 | cv = 15: 0.638889 |
PF | cv = 20: 0.758333 | LOOCV: 0.693878 | cv = 9: 0.807407 | cv = 17: 0.754902 |
TD | cv = 9: 0.818519 | cv = 8: 0.758929 | cv = 8: 0.693452 | cv = 15: 0.733333 |
C | LOOCV: 0.734694 | cv = 13: 0.621795 | cv = 23: 0.688406 | cv = 20: 0.583333 |
SS | cv = 21: 0.761905 | cv = 13, 15: 0.666667 | cv = 17: 0.784314 | cv = 6: 0.574074 |
D | LOOCV: 0.734694 | cv = 17: 0.676471 | cv = 6: 0.712963 | cv = 16: 0.697917 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takács, K.; Lukács, E.; Levendovics, R.; Pekli, D.; Szijártó, A.; Haidegger, T. Assessment of Surgeons’ Stress Levels with Digital Sensors during Robot-Assisted Surgery: An Experimental Study. Sensors 2024, 24, 2915. https://doi.org/10.3390/s24092915
Takács K, Lukács E, Levendovics R, Pekli D, Szijártó A, Haidegger T. Assessment of Surgeons’ Stress Levels with Digital Sensors during Robot-Assisted Surgery: An Experimental Study. Sensors. 2024; 24(9):2915. https://doi.org/10.3390/s24092915
Chicago/Turabian StyleTakács, Kristóf, Eszter Lukács, Renáta Levendovics, Damján Pekli, Attila Szijártó, and Tamás Haidegger. 2024. "Assessment of Surgeons’ Stress Levels with Digital Sensors during Robot-Assisted Surgery: An Experimental Study" Sensors 24, no. 9: 2915. https://doi.org/10.3390/s24092915
APA StyleTakács, K., Lukács, E., Levendovics, R., Pekli, D., Szijártó, A., & Haidegger, T. (2024). Assessment of Surgeons’ Stress Levels with Digital Sensors during Robot-Assisted Surgery: An Experimental Study. Sensors, 24(9), 2915. https://doi.org/10.3390/s24092915