Scale-Aware Edge-Preserving Full Waveform Inversion with Diffusion Filter for Crosshole Sensor Arrays
Abstract
:1. Introduction
2. Methods
2.1. Nonlinear Anisotropic Hybrid Diffusion Filter
2.2. Scale-Aware Edge-Preserving FWI
3. Results
3.1. Synthetic Experiments
3.2. Field Dataset Application
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ajo-Franklin, J.B.; Peterson, J.; Doetsch, J.; Daley, T.M. High-Resolution Characterization of a CO2 Plume Using Crosswell Seismic Tomography: Cranfield, MS, USA. Int. J. Greenh. Gas Control 2013, 18, 497–509. [Google Scholar] [CrossRef]
- Arts, R.; Eiken, O.; Chadwick, A.; Zweigel, P.; Van Der Meer, L.; Zinszner, B. Monitoring of CO2 Injected at Sleipner Using Time-Lapse Seismic Data. Energy 2004, 29, 1383–1392. [Google Scholar] [CrossRef]
- Arts, R.J.; Elsayed, R.; Van Der Meer, L.; Eiken, O.; Ostmo, S.; Chadwick, A.; Kirby, G.; Zinszner, B. Estimation of the Mass of Injected CO2 at Sleipner Using Time-Lapse Seismic Data. In Proceedings of the 64th EAGE Conference & Exhibition; European Association of Geoscientists & Engineers, Florence, Italy, 27–30 May 2002. [Google Scholar]
- Daley, T.M.; Myer, L.R.; Peterson, J.E.; Majer, E.L.; Hoversten, G.M. Time-Lapse Crosswell Seismic and VSP Monitoring of Injected CO2 in a Brine Aquifer. Environ. Geol. 2008, 54, 1657–1665. [Google Scholar] [CrossRef]
- Daley, T.M.; Ajo-Franklin, J.B.; Doughty, C. Constraining the Reservoir Model of an Injected CO2 Plume with Crosswell CASSM at the Frio-II Brine Pilot. Int. J. Greenh. Gas Control 2011, 5, 1022–1030. [Google Scholar] [CrossRef]
- Lazaratos, S.K.; Marion, B.P. Crosswell Seismic Imaging of Reservoir Changes Caused by CO2 Injection. Lead. Edge 1997, 16, 1300–1308. [Google Scholar] [CrossRef]
- Métivier, L.; Brossier, R.; Virieux, J.; Operto, S. Full Waveform Inversion and the Truncated Newton Method. SIAM J. Sci. Comput. 2013, 35, B401–B437. [Google Scholar] [CrossRef]
- Aghamiry, H.S.; Gholami, A.; Operto, S. Multi-Parameter Wavefield Reconstruction Inversion for Wavespeed and Attenuation with Bound Constraints and Total Variation Regularization. Geophysics 2020, 85, R381–R396. [Google Scholar] [CrossRef]
- Asnaashari, A.; Brossier, R.; Garambois, S.; Audebert, F.; Thore, P.; Virieux, J. Time-lapse Seismic Imaging Using Regularized Full-waveform Inversion with a Prior Model: Which Strategy? Geophys. Prospect. 2015, 63, 78–98. [Google Scholar] [CrossRef]
- Yang, J.; He, X.; Chen, H. Processing the Artificial Edge-Effects for Finite-Difference Frequency-Domain in Viscoelastic Anisotropic Formations. Appl. Sci. 2022, 12, 4719. [Google Scholar] [CrossRef]
- Xiang, S.; Zhang, H. Efficient Edge-Guided Full-Waveform Inversion by Canny Edge Detection and Bilateral Filtering Algorithms. Geophys. J. Int. 2016, 207, 1049–1061. [Google Scholar] [CrossRef]
- Kazei, V.V.; Kalita, M.; Alkhalifah, T. Salt-Body Inversion with Minimum Gradient Support and Sobolev Space Norm Regularizations. In Proceedings of the 79th EAGE Conference and Exhibition 2017, Paris, France, 12 June 2017. [Google Scholar]
- Deng, Y.; Liu, G.; Du, J.; Li, C.; Wu, Q. Structure Guided Multiparameter Waveform Inversion with Attenuation Compensation in Viscoacoustic Medium. IEEE Geosci. Remote Sens. Lett. 2023, 20, 3001005. [Google Scholar] [CrossRef]
- Gao, L.; Pan, Y.; Rieder, A.; Bohlen, T. Multiparameter Viscoelastic Full-Waveform Inversion of Shallow-Seismic Surface Waves with a Pre-Conditioned Truncated Newton Method. Geophys. J. Int. 2021, 227, 2044–2057. [Google Scholar] [CrossRef]
- Kamei, R.; Pratt, R.G. Inversion Strategies for Visco-Acoustic Waveform Inversion. Geophys. J. Int. 2013, 194, 859–884. [Google Scholar] [CrossRef]
- Yang, J.; Zhu, H.; Li, X.; Ren, L.; Zhang, S. Estimating P Wave Velocity and Attenuation Structures Using Full Waveform Inversion Based on a Time Domain Complex-Valued Viscoacoustic Wave Equation: The Method. JGR Solid Earth 2020, 125, e2019JB019129. [Google Scholar] [CrossRef]
- Geng, Y.; Innanen, K.; Pan, W. Nonlinear Multiparameter Full Waveform Inversion Based on Truncated Newton Method. In Research Report 2017; University of Calgary: Calgary, AB, Canada, 2017; Volume 29. [Google Scholar]
- Yang, D.; Liu, F.; Morton, S.; Malcolm, A.; Fehler, M. Time-Lapse Full-Waveform Inversion with Ocean-Bottom-Cable Data: Application on Valhall Field. Geophysics 2016, 81, R225–R235. [Google Scholar] [CrossRef]
- Groos, L.; Schäfer, M.; Forbriger, T.; Bohlen, T. The Role of Attenuation in 2D Full-Waveform Inversion of Shallow-Seismic Body and Rayleigh Waves. Geophysics 2014, 79, R247–R261. [Google Scholar] [CrossRef]
- Hicks, G.J.; Pratt, R.G. Reflection Waveform Inversion Using Local Descent Methods: Estimating Attenuation and Velocity over a Gas-sand Deposit. Geophysics 2001, 66, 598–612. [Google Scholar] [CrossRef]
- Kamath, N.; Brossier, R.; Métivier, L.; Yang, P. Multiparameter Full-Waveform Inversion of Data from the Valhall Field. In Proceedings of the SEG Technical Program Expanded Abstracts 2019; Society of Exploration Geophysicists: San Antonio, TX, USA, 2019; pp. 1640–1644. [Google Scholar]
- Li, D.; Xu, K.; Harris, J.M.; Darve, E. Coupled Time-Lapse Full Waveform Inversion for Subsurface Flow Problems Using Intrusive Automatic Differentiation. Water Resour. Res. 2020, 56, e2019WR027032. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, J.; Tang, Z.; Sun, C. Robust Full-Waveform Inversion Based on Automatic Differentiation and Differentiable Dynamic Time Warping. J. Geophys. Eng. 2023, 20, 549–564. [Google Scholar] [CrossRef]
- Sci, G. Subspace Methods in Multi-Parameter Seismic Full Waveform Inversion. CiCP 2020, 28, 228–248. [Google Scholar] [CrossRef]
- Matharu, G.; Sacchi, M.D. Source Encoding in Multiparameter Full Waveform Inversion. Geophys. J. Int. 2018, 214, 792–810. [Google Scholar] [CrossRef]
- Mendrik, A.M.; Vonken, E.-J.; Rutten, A.; Viergever, M.A.; Van Ginneken, B. Noise Reduction in Computed Tomography Scans Using 3-D Anisotropic Hybrid Diffusion With Continuous Switch. IEEE Trans. Med. Imaging 2009, 28, 1585–1594. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; He, X.; Chen, H.; Li, J.; Wang, W. Scale-Aware Edge-Preserving Full Waveform Inversion with Diffusion Filter for Crosshole Sensor Arrays. Sensors 2024, 24, 2881. https://doi.org/10.3390/s24092881
Yang J, He X, Chen H, Li J, Wang W. Scale-Aware Edge-Preserving Full Waveform Inversion with Diffusion Filter for Crosshole Sensor Arrays. Sensors. 2024; 24(9):2881. https://doi.org/10.3390/s24092881
Chicago/Turabian StyleYang, Jixin, Xiao He, Hao Chen, Jiacheng Li, and Wenwen Wang. 2024. "Scale-Aware Edge-Preserving Full Waveform Inversion with Diffusion Filter for Crosshole Sensor Arrays" Sensors 24, no. 9: 2881. https://doi.org/10.3390/s24092881
APA StyleYang, J., He, X., Chen, H., Li, J., & Wang, W. (2024). Scale-Aware Edge-Preserving Full Waveform Inversion with Diffusion Filter for Crosshole Sensor Arrays. Sensors, 24(9), 2881. https://doi.org/10.3390/s24092881