Enhancing Sensitivity in Gas Detection: Porous Structures in Organic Field-Effect Transistor-Based Sensors
Abstract
:1. Introduction
2. OFET-Based Gas Sensors—Operating Mechanism
3. Control of Thickness and Free Volume for Enhanced Sensitivity
4. Porous Structure for Enhanced Sensitivity
4.1. Self-Assembled Porous Structure
4.2. Porous Semiconducting Polymer via Etching
4.3. Porous Evaporated Semiconductor via Etching
5. Conclusions and Future Perspective
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hwang, D.K.; Dasari, R.R.; Fenoll, M.; Alain-Rizzo, V.; Dindar, A.; Shim, J.W.; Deb, N.; Fuentes-Hernandez, C.; Barlow, S.; Bucknall, D.G.; et al. Stable Solution-Processed Molecular n-Channel Organic Field-Effect Transistors. Adv. Mater. 2012, 24, 4445–4450. [Google Scholar] [CrossRef]
- Paek, S.; Cho, N.; Cho, S.; Lee, J.K.; Ko, J. Planar Star-Shaped Organic Semiconductor with Fused Triphenylamine Core for Solution-Processed Small-Molecule Organic Solar Cells and Field-Effect Transistors. Org. Lett. 2012, 14, 6326–6329. [Google Scholar] [CrossRef] [PubMed]
- Di, C.-a.; Liu, Y.; Yu, G.; Zhu, D. Interface Engineering: An Effective Approach toward High-Performance Organic Field-Effect Transistors. Acc. Chem. Res. 2009, 42, 1573–1583. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, P.; Hu, W. Organic field-effect transistor-based gas sensors. Chem. Soc. Rev. 2015, 44, 2087–2107. [Google Scholar] [CrossRef]
- Li, P.; Lu, Z.-H. Interface Engineering in Organic Electronics: Energy-Level Alignment and Charge Transport. Small Sci. 2021, 1, 2000015. [Google Scholar] [CrossRef]
- Anthony, J.E. The Larger Acenes: Versatile Organic Semiconductors. Angew. Chem. Int. Ed. 2008, 47, 452–483. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.; Ahrens, L.; Brosius, V.; Freudenberg, J.; Bunz, U.H.F. Unusual stabilization of larger acenes and heteroacenes. J. Mater. Chem. C 2019, 7, 14011–14034. [Google Scholar]
- Natsume, Y.; Minakata, T.; Aoyagi, T. Pentacene thin film transistors fabricated by solution process with directional crystal growth. Org. Electron. 2009, 10, 107–114. [Google Scholar] [CrossRef]
- Temiño, I.; Del Pozo, F.G.; Ajayakumar, M.R.; Galindo, S.; Puigdollers, J.; Mas-Torrent, M. A Rapid, Low-Cost, and Scalable Technique for Printing State-of-the-Art Organic Field-Effect Transistors. Adv. Mater. Technol. 2016, 1, 1600090. [Google Scholar] [CrossRef]
- Anthony, J.E.; Brooks, J.S.; Eaton, D.L.; Parkin, S.R. Functionalized Pentacene: Improved Electronic Properties from Control of Solid-State Order. J. Am. Chem. Soc. 2001, 123, 9482–9483. [Google Scholar] [CrossRef]
- Blasi, D.; Viola, F.; Modena, F.; Luukkonen, A.; Macchia, E.; Picca, R.A.; Gounani, Z.; Tewari, A.; Österbacka, R.; Caironi, M.; et al. Printed, cost-effective and stable poly(3-hexylthiophene) electrolyte-gated field-effect transistors. J. Mater. Chem. C 2020, 8, 15312–15321. [Google Scholar] [CrossRef]
- Janasz, L.; Borkowski, M.; Blom, P.W.M.; Marszalek, T.; Pisula, W. Organic Semiconductor/Insulator Blends for Elastic Field-Effect Transistors and Sensors. Adv. Funct. Mater. 2022, 32, 2105456. [Google Scholar] [CrossRef]
- Lee, H.S.; Cho, J.H.; Cho, K.; Park, Y.D. Alkyl Side Chain Length Modulates the Electronic Structure and Electrical Characteristics of Poly(3-alkylthiophene) Thin Films. J. Phys. Chem. C 2013, 117, 11764–11769. [Google Scholar] [CrossRef]
- Takagi, K.; Nagase, T.; Kobayashi, T.; Naito, H. High performance top-gate field-effect transistors based on poly(3-alkylthiophenes) with different alkyl chain lengths. Org. Electron. 2014, 15, 372–377. [Google Scholar] [CrossRef]
- Wu, M.; Hou, S.; Yu, X.; Yu, J. Recent progress in chemical gas sensors based on organic thin film transistors. J. Mater. Chem. C 2020, 8, 13482–13500. [Google Scholar] [CrossRef]
- Mirza, M.; Wang, J.; Li, D.; Arabi, S.A.; Jiang, C. Novel Top-Contact Monolayer Pentacene-Based Thin-Film Transistor for Ammonia Gas Detection. ACS Appl. Mater. Interfaces 2014, 6, 5679–5684. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Gao, P.; Baumgarten, M.; Müllen, K.; Lu, N.; Fuchs, H.; Chi, L. High Performance Field-Effect Ammonia Sensors Based on a Structured Ultrathin Organic Semiconductor Film. Adv. Mater. 2013, 25, 3419–3425. [Google Scholar] [CrossRef] [PubMed]
- Mougkogiannis, P.; Turner, M.; Persaud, K. Amine Detection Using Organic Field Effect Transistor Gas Sensors. Sensors 2021, 21, 13. [Google Scholar] [CrossRef] [PubMed]
- Sagdullina, D.; Lukashkin, N.; Parfenov, A.; Lyssenko, K.; Troshin, P. Highly sensitive OFET-based gas sensors using fluorinated naphthalenediimide semiconductor films. Synth. Met. 2020, 260, 116289. [Google Scholar] [CrossRef]
- Han, S.; Yang, Z.; Li, Z.; Zhuang, X.; Akinwande, D.; Yu, J. Improved Room Temperature NO2 Sensing Performance of Organic Field-Effect Transistor by Directly Blending a Hole-Transporting/Electron-Blocking Polymer into the Active Layer. ACS Appl. Mater. Interfaces 2018, 10, 38280–38286. [Google Scholar] [CrossRef]
- Waldrip, M.; Jurchescu, O.D.; Gundlach, D.J.; Bittle, E.G. Contact Resistance in Organic Field-Effect Transistors: Conquering the Barrier. Adv. Funct. Mater. 2020, 30, 1904576. [Google Scholar] [CrossRef]
- Lv, A.; Pan, Y.; Chi, L. Gas Sensors Based on Polymer Field-Effect Transistors. Sensors 2017, 17, 213. [Google Scholar] [CrossRef] [PubMed]
- Kwak, D.; Lei, Y.; Maric, R. Ammonia gas sensors: A comprehensive review. Talanta 2019, 204, 713–730. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, L.; Zhu, X.; Zhou, X.; Chi, L. An Ultrasensitive Organic Semiconductor NO2 Sensor Based on Crystalline TIPS-Pentacene Films. Adv. Mater. 2017, 29, 1703192. [Google Scholar] [CrossRef]
- Khim, D.; Ryu, G.-S.; Park, W.-T.; Kim, H.; Lee, M.; Noh, Y.-Y. Precisely Controlled Ultrathin Conjugated Polymer Films for Large Area Transparent Transistors and Highly Sensitive Chemical Sensors. Adv. Mater. 2016, 28, 2752–2759. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, X.; Han, S.; Huai, B.; Shi, W.; Yu, J. Sub-ppm and high response organic thin-film transistor NO2 sensor based on nanofibrillar structured TIPS-pentacene. Sens. Actuators B Chem. 2019, 279, 238–244. [Google Scholar] [CrossRef]
- Cavallari, M.R.; Pastrana, L.M.; Sosa, C.D.; Marquina, A.M.; Izquierdo, J.E.; Fonseca, F.J.; Amorim, C.A.; Paterno, L.G.; Kymissis, I. Organic Thin-Film Transistors as Gas Sensors: A Review. Materials 2021, 14, 3. [Google Scholar] [CrossRef]
- King, B.; Lessard, B.H. Review of recent advances and sensing mechanisms in solid-state organic thin-film transistor (OTFT) sensors. J. Mater. Chem. C 2024, 12, 5654–5683. [Google Scholar] [CrossRef]
- Raju, P.; Li, Q. Review—Semiconductor Materials and Devices for Gas Sensors. J. Electrochem. Soc. 2022, 169, 057518. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Z.; Wei, S.; Ge, F.; Liu, L.; Zhang, G.; Ding, Y.; Qiu, L. Ultrathin semiconductor films for NH3 gas sensors prepared by vertical phase separation. Synth. Met. 2018, 244, 20–26. [Google Scholar] [CrossRef]
- Sizov, A.S.; Trul, A.A.; Chekusova, V.; Borshchev, O.V.; Vasiliev, A.A.; Agina, E.V.; Ponomarenko, S.A. Highly Sensitive Air-Stable Easily Processable Gas Sensors Based on Langmuir–Schaefer Monolayer Organic Field-Effect Transistors for Multiparametric H2S and NH3 Real-Time Detection. ACS Appl. Mater. Interfaces 2018, 10, 43831–43841. [Google Scholar] [CrossRef] [PubMed]
- Hur, J.; Park, S.; Kim, J.H.; Cho, J.Y.; Kwon, B.; Lee, J.H.; Bae, G.Y.; Kim, H.; Han, J.T.; Lee, W.H. Ultrasensitive, Transparent, Flexible, and Ecofriendly NO2 Gas Sensors Enabled by Oxidized Single-Walled Carbon Nanotube Bundles on Cellulose with Engineered Surface Roughness. ACS Sustain. Chem. Eng. 2022, 10, 3227–3235. [Google Scholar] [CrossRef]
- Kwon, B.; Bae, H.; Lee, H.; Kim, S.; Hwang, J.; Lim, H.; Lee, J.H.; Cho, K.; Ye, J.; Lee, S.; et al. Ultrasensitive N-Channel Graphene Gas Sensors by Nondestructive Molecular Doping. ACS Nano 2022, 16, 2176–2187. [Google Scholar] [CrossRef] [PubMed]
- Qian, C.; Choi, Y.; Kim, S.; Kim, S.; Choi, Y.J.; Roe, D.G.; Lee, J.H.; Kang, M.S.; Lee, W.H.; Cho, J.H. Risk-Perceptional and Feedback-Controlled Response System Based on NO2-Detecting Artificial Sensory Synapse. Adv. Funct. Mater. 2022, 32, 2112490. [Google Scholar] [CrossRef]
- Jeong, G.; Cheon, H.J.; Shin, S.Y.; Wi, E.; Kyokunzire, P.; Cheon, H.; Van Tran, V.; Vu, T.T.; Chang, M. Improved NO2 gas sensing performance of nanoporous conjugated polymer (CP) thin films by incorporating preformed CP nanowires. Dye. Pigment. 2023, 214, 111235. [Google Scholar] [CrossRef]
- Chae, H.; Han, J.M.; Ahn, Y.; Kwon, J.E.; Lee, W.H.; Kim, B.-G. NO2-Affinitive Amorphous Conjugated Polymer for Field-Effect Transistor Sensor toward Improved NO2 Detection Capability. Adv. Mater. Technol. 2021, 6, 2100580. [Google Scholar] [CrossRef]
- Shaymurat, T.; Tang, Q.; Tong, Y.; Dong, L.; Liu, Y. Gas Dielectric Transistor of CuPc Single Crystalline Nanowire for SO2 Detection Down to Sub-ppm Levels at Room Temperature. Adv. Mater. 2013, 25, 2269–2273. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Huang, W.; Zhuang, X.; Tang, Y.; Yu, J. Thickness modulation on semiconductor towards high performance gas sensors based on organic thin film transistors. Mater. Sci. Eng. B 2017, 226, 107–113. [Google Scholar] [CrossRef]
- Chae, H.; Hwang, S.; Kwon, J.E.; Pham, Q.B.; Kim, S.-J.; Lee, W.H.; Kim, B.-G. Comparative study on the intrinsic NO2 gas sensing capability of triarylamine-based amorphous organic semiconductors. Dye. Pigment. 2021, 186, 109017. [Google Scholar] [CrossRef]
- Zhang, F.; Di, C.-a.; Berdunov, N.; Hu, Y.; Hu, Y.; Gao, X.; Meng, Q.; Sirringhaus, H.; Zhu, D. Ultrathin Film Organic Transistors: Precise Control of Semiconductor Thickness via Spin-Coating. Adv. Mater. 2013, 25, 1401–1407. [Google Scholar] [CrossRef]
- Chen, H.; Hu, Q.; Qiu, L.; Wang, X. Solution-Processed Ultrathin Semiconductor Films for High-Performance Ammonia Sensors. Adv. Mater. Interfaces 2021, 8, 2100493. [Google Scholar] [CrossRef]
- Huang, J.; Sun, J.; Katz, H.E. Monolayer-Dimensional 5,5′-Bis(4-hexylphenyl)-2,2′-bithiophene Transistors and Chemically Responsive Heterostructures. Adv. Mater. 2008, 20, 2567–2572. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, D.; Nguyen, K.V.; Lee, J.H.; Lee, W.H. Optimization of Gas-Sensing Properties in Poly(triarylamine) Field-Effect Transistors by Device and Interface Engineering. Polymers 2023, 15, 3463. [Google Scholar] [CrossRef]
- Lee, J.H.; Lyu, J.; Kim, M.; Ahn, H.; Lim, S.; Jang, H.W.; Chung, H.-J.; Lee, J.H.; Koo, J.; Lee, W.H. Quantitative Determination of Charge Transport Interface at Vertically Phase Separated Soluble Acene/Polymer Blends. Adv. Funct. Mater. 2023, 33, 2215221. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, G.; Luo, H.; Yao, J.; Liu, Z.; Zhang, D. Highly Sensitive Thin-Film Field-Effect Transistor Sensor for Ammonia with the DPP-Bithiophene Conjugated Polymer Entailing Thermally Cleavable tert-Butoxy Groups in the Side Chains. ACS Appl. Mater. Interfaces 2016, 8, 3635–3643. [Google Scholar] [CrossRef] [PubMed]
- Ahn, Y.; Hwang, S.; Kye, H.; Kim, M.S.; Lee, W.H.; Kim, B.-G. Side-Chain-Assisted Transition of Conjugated Polymers from a Semiconductor to Conductor and Comparison of Their NO2 Sensing Characteristics. Materials 2023, 16, 2877. [Google Scholar] [CrossRef] [PubMed]
- Hong, M.; Park, S.Y.; Lee, J.E.; Park, Y.D. High-performance flexible organic gas sensor via alkyl side chain engineering of polyalkylthiophene. Chem. Eng. J. 2024, 480, 147962. [Google Scholar] [CrossRef]
- Yu, S.H.; Girma, H.G.; Sim, K.M.; Yoon, S.; Park, J.M.; Kong, H.; Chung, D.S. Polymer-based flexible NOx sensors with ppb-level detection at room temperature using breath-figure molding. Nanoscale 2019, 11, 17709–17717. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.H.; Cho, J.H.; Cho, K. Control of mesoscale and nanoscale ordering of organic semiconductors at the gate dielectric/semiconductor interface for organic transistors. J. Mater. Chem. 2010, 20, 2549–2561. [Google Scholar] [CrossRef]
- Tang, W.; Huang, Y.; Han, L.; Liu, R.; Su, Y.; Guo, X.; Yan, F. Recent progress in printable organic field effect transistors. J. Mater. Chem. C 2019, 7, 790–808. [Google Scholar] [CrossRef]
- Lu, C.-F.; Liao, S.-F.; Wang, K.-H.; Chen, C.-T.; Chao, C.-Y.; Su, W.-F. Rapid template-free synthesis of nanostructured conducting polymer films by tuning their morphology using hyperbranched polymer additives. Nanoscale 2019, 11, 20977–20986. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.-Q.; Huang, W.-P.; Wang, J.; Ren, K.-F.; Ji, J. UV-triggered Polymerization of Polyelectrolyte Composite Coating with Pore Formation and Lubricant Infusion. Chin. J. Polym. Sci. 2023, 41, 365–372. [Google Scholar] [CrossRef]
- Yuvaraja, S.; Surya, S.G.; Chernikova, V.; Vijjapu, M.T.; Shekhah, O.; Bhatt, P.M.; Chandra, S.; Eddaoudi, M.; Salama, K.N. Realization of an Ultrasensitive and Highly Selective OFET NO2 Sensor: The Synergistic Combination of PDVT-10 Polymer and Porphyrin–MOF. ACS Appl. Mater. Interfaces 2020, 12, 18748–18760. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.H.; Kwak, D.; Anthony, J.E.; Lee, H.S.; Choi, H.H.; Kim, D.H.; Lee, S.G.; Cho, K. The Influence of the Solvent Evaporation Rate on the Phase Separation and Electrical Performances of Soluble Acene-Polymer Blend Semiconductors. Adv. Funct. Mater. 2012, 22, 267–281. [Google Scholar] [CrossRef]
- Na, J.Y.; Kang, B.; Sin, D.H.; Cho, K.; Park, Y.D. Understanding Solidification of Polythiophene Thin Films during Spin-Coating: Effects of Spin-Coating Time and Processing Additives. Sci. Rep. 2015, 5, 13288. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Seo, Y.; Park, Y.D.; Anthony, J.E.; Kwak, D.H.; Lim, J.A.; Ko, S.; Jang, H.W.; Cho, K.; Lee, W.H. Effect of Crystallization Modes in TIPS-pentacene/Insulating Polymer Blends on the Gas Sensing Properties of Organic Field-Effect Transistors. Sci. Rep. 2019, 9, 21. [Google Scholar] [CrossRef] [PubMed]
- Hwang, D.K.; Fuentes-Hernandez, C.; Berrigan, J.D.; Fang, Y.; Kim, J.; Potscavage, W.J.; Cheun, H.; Sandhage, K.H.; Kippelen, B. Solvent and polymer matrix effects on TIPS-pentacene/polymer blend organic field-effect transistors. J. Mater. Chem. 2012, 22, 5531–5537. [Google Scholar] [CrossRef]
- Lee, J.H.; Choi, H.H.; Park, Y.D.; Anthony, J.E.; Lim, J.A.; Cho, J.; Chung, D.S.; Hwang, J.; Jang, H.W.; Cho, K.; et al. 1D versus 2D Growth of Soluble Acene Crystals from Soluble Acene/Polymer Blends Governed by a Residual Solvent Reservoir in a Phase-Separated Polymer Matrix. Adv. Funct. Mater. 2018, 28, 1802875. [Google Scholar] [CrossRef]
- Dong, W.; Zhou, Y.; Yan, D.; Mai, Y.; He, L.; Jin, C. Honeycomb-Structured Microporous Films Made from Hyperbranched Polymers by the Breath Figure Method. Langmuir 2009, 25, 173–178. [Google Scholar] [CrossRef]
- Zhang, A.; Bai, H.; Li, L. Breath Figure: A Nature-Inspired Preparation Method for Ordered Porous Films. Chem. Rev. 2015, 115, 9801–9868. [Google Scholar] [CrossRef]
- Ferrari, E.; Fabbri, P.; Pilati, F. Solvent and Substrate Contributions to the Formation of Breath Figure Patterns in Polystyrene Films. Langmuir 2011, 27, 1874–1881. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, B.; Huang, L.; Huang, W.; Wang, Z.; Zhu, W.; Chen, Y.; Mao, Y.; Facchetti, A.; Marks, T.J. Breath figure–derived porous semiconducting films for organic electronics. Sci. Adv. 2020, 6, eaaz1042. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Liu, C.; Peng, Y.; Deng, J.; Hou, S.; Cheng, Y.; Huang, W.; Yu, J. Ultrasensitive flexible NO2 gas sensors via multilayer porous polymer film. Sens. Actuators B Chem. 2022, 368, 132113. [Google Scholar] [CrossRef]
- Guillen, G.R.; Pan, Y.; Li, M.; Hoek, E.M.V. Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review. Ind. Eng. Chem. Res. 2011, 50, 3798–3817. [Google Scholar] [CrossRef]
- Liang, J.; Song, Z.; Wang, S.; Zhao, X.; Tong, Y.; Ren, H.; Guo, S.; Tang, Q.; Liu, Y. Cobweb-like, Ultrathin Porous Polymer Films for Ultrasensitive NO2 Detection. ACS Appl. Mater. Interfaces 2020, 12, 52992–53002. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wu, S.; Ge, F.; Zhang, G.; Lu, H.; Qiu, L. Solution-Processed Microporous Semiconductor Films for High-Performance Chemical Sensors. Adv. Mater. Interfaces 2016, 3, 1600518. [Google Scholar] [CrossRef]
- Park, M.S.; Meresa, A.A.; Kwon, C.-M.; Kim, F.S. Selective Wet-Etching of Polymer/Fullerene Blend Films for Surface- and Nanoscale Morphology-Controlled Organic Transistors and Sensitivity-Enhanced Gas Sensors. Polymers 2019, 11, 1682. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.; Cao, L.; Wu, T. Meniscus-Guided Deposition of Organic Semiconductor Thin Films: Materials, Mechanism, and Application in Organic Field-Effect Transistors. Small 2023, 19, 2300151. [Google Scholar] [CrossRef] [PubMed]
- Tran, V.V.; Jeong, G.; Kim, K.S.; Kim, J.; Jung, H.-R.; Park, B.; Park, J.-J.; Chang, M. Facile Strategy for Modulating the Nanoporous Structure of Ultrathin π-Conjugated Polymer Films for High-Performance Gas Sensors. ACS Sens. 2022, 7, 175–185. [Google Scholar] [CrossRef]
- Virkar, A.; Mannsfeld, S.; Oh, J.H.; Toney, M.F.; Tan, Y.H.; Liu, G.-y.; Scott, J.C.; Miller, R.; Bao, Z. The Role of OTS Density on Pentacene and C60 Nucleation, Thin Film Growth, and Transistor Performance. Adv. Funct. Mater. 2009, 19, 1962–1970. [Google Scholar] [CrossRef]
- Lee, H.S.; Kim, D.H.; Cho, J.H.; Hwang, M.; Jang, Y.; Cho, K. Effect of the Phase States of Self-Assembled Monolayers on Pentacene Growth and Thin-Film Transistor Characteristics. J. Am. Chem. Soc. 2008, 130, 10556–10564. [Google Scholar] [CrossRef] [PubMed]
- Kang, B.; Jang, M.; Chung, Y.; Kim, H.; Kwak, S.K.; Oh, J.H.; Cho, K. Enhancing 2D growth of organic semiconductor thin films with macroporous structures via a small-molecule heterointerface. Nat. Commun. 2014, 5, 4752. [Google Scholar] [CrossRef] [PubMed]
- Cranston, R.R.; Lessard, B.H. Metal phthalocyanines: Thin-film formation, microstructure, and physical properties. RSC Adv. 2021, 11, 21716–21737. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Liu, D.; Zhou, J.; Chu, Y.; Chen, Y.; Wu, X.; Huang, J. Porous Organic Field-Effect Transistors for Enhanced Chemical Sensing Performances. Adv. Funct. Mater. 2017, 27, 1700018. [Google Scholar] [CrossRef]
- Chung, S.; Jang, M.; Ji, S.-B.; Im, H.; Seong, N.; Ha, J.; Kwon, S.-K.; Kim, Y.-H.; Yang, H.; Hong, Y. Flexible high-performance all-inkjet-printed inverters: Organo-compatible and stable interface engineering. Adv. Mater. 2013, 25, 4773–4777. [Google Scholar] [CrossRef] [PubMed]
- Zeidell, A.M.; Filston, D.S.; Waldrip, M.; Iqbal, H.F.; Chen, H.; McCulloch, I.; Jurchescu, O.D. Large-Area Uniform Polymer Transistor Arrays on Flexible Substrates: Towards High-Throughput Sensor Fabrication. Adv. Mater. Technol. 2020, 5, 2000390. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, W.; Li, M.; He, G.; Guo, X. Interface Engineering in Organic Field-Effect Transistors: Principles, Applications, and Perspectives. Chem. Rev. 2020, 120, 2879–2949. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Kaur, N.; Sharma, A.K.; Mahajan, A.; Bedi, R.K. Improved Cl2 sensing characteristics of reduced graphene oxide when decorated with copper phthalocyanine nanoflowers. RSC Adv. 2017, 7, 25229–25236. [Google Scholar] [CrossRef]
- Shin, S.Y.; Jeong, G.; Phu, N.A.M.M.; Cheon, H.; Tran, V.V.; Yoon, H.; Chang, M. Improved NO2 Gas-Sensing Performance of an Organic Field-Effect Transistor Based on Reduced Graphene Oxide-Incorporated Nanoporous Conjugated Polymer Thin Films. Chem. Mater. 2023, 35, 7460–7474. [Google Scholar] [CrossRef]
- Ganesh Moorthy, S.; King, B.; Kumar, A.; Lesniewska, E.; Lessard, B.H.; Bouvet, M. Molecular Engineering of Silicon Phthalocyanine to Improve the Charge Transport and Ammonia Sensing Properties of Organic Heterojunction Gas Sensors. Adv. Sens. Res. 2023, 2, 2200030. [Google Scholar] [CrossRef]
- Jiang, X.; Shi, C.; Wang, Z.; Huang, L.; Chi, L. Healthcare Monitoring Sensors Based on Organic Transistors: Surface/Interface Strategy and Performance. Adv. Mater. 2024, 36, 2308952. [Google Scholar] [CrossRef] [PubMed]
Method | Processing | Sensing Material | Analyte | Detection Range | Detection Limit | Sensitivity [%/ppm] | Refs. |
---|---|---|---|---|---|---|---|
Thickness control | Spin coating | CuPc | NO2 | 1~30 ppm | - | [40] | |
Thickness control | Spin coating | PBIBDF-BT | NH3 | 0~10 ppm | 2 ppm | - | [41] |
Side Chain control | Spin coating | PTQ-TEG | NO2 | 50 ppm | 1.59 ppb | 6.9 | [46] |
Side Chain control | Spin coating | P3DDT | NO2 | 10~50 ppm | 0.26 ppt | 0.45 | [47] |
Self-assembled porous structure | Spin coating | TIPS-pentacene/PS | NO2 | 1~50 ppm | - | ~2 | [56] |
Breath figure method | Spin coating | P3HT/PS | NO2 | 0~20 ppm | - | 48.2 | [62] |
Breath figure method | Spin coating | C8-BTBT/PS | NH3 | 0~20 ppm | - | 12.5 | [62] |
Breath figure method | Spin coating | N2200/PS | NH3 | 0~20 ppm | - | ~4.5 | [62] |
Multiple layered Breath figure model | Spin coating | P3HT | NO2 | 0.5~30 ppm | 2.3 ppb | 457 | [63] |
solvent–nonsolvent exchange | Spin coating | PCDTPT | NO2 | 0~30 ppm | <1 ppm | 9.89 × 103 | [65] |
Selective Etching | Spin coating | PBIBDF-BT | NH3 | 10 ppm | 0.5 ppm | [66] | |
Selective Etching | Shear coating | P3HT/PS | NH3 | 0.5~30 ppm | 0.5 ppm | 7.02 | [69] |
Selective Etching | Spin coating | P3HT | NH3 | 10 ppm | 1 ppm | [67] | |
Porous template | evaporation | DNTT | NH3 | 0~10 ppm | 10 ppb | 340 | [74] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, S.; Nguyen, K.V.; Lee, W.H. Enhancing Sensitivity in Gas Detection: Porous Structures in Organic Field-Effect Transistor-Based Sensors. Sensors 2024, 24, 2862. https://doi.org/10.3390/s24092862
Lim S, Nguyen KV, Lee WH. Enhancing Sensitivity in Gas Detection: Porous Structures in Organic Field-Effect Transistor-Based Sensors. Sensors. 2024; 24(9):2862. https://doi.org/10.3390/s24092862
Chicago/Turabian StyleLim, Soohwan, Ky Van Nguyen, and Wi Hyoung Lee. 2024. "Enhancing Sensitivity in Gas Detection: Porous Structures in Organic Field-Effect Transistor-Based Sensors" Sensors 24, no. 9: 2862. https://doi.org/10.3390/s24092862
APA StyleLim, S., Nguyen, K. V., & Lee, W. H. (2024). Enhancing Sensitivity in Gas Detection: Porous Structures in Organic Field-Effect Transistor-Based Sensors. Sensors, 24(9), 2862. https://doi.org/10.3390/s24092862