Online Detection of Hydrogen Fluoride under Corona Discharge in Gas-Insulated Switchgear Based on Photoacoustic Spectroscopy
Abstract
:1. Introduction
2. Principle of Resonant Photoacoustic Spectroscopy Detection Technology
3. Construction of Photoacoustic Spectroscopy Experiment System
Absorption Lines of HF
4. Experiment and Analysis
4.1. The Modulating Sinusoidal Wave Frequency of the DFB Laser
4.2. Calibration of HF Concentration
4.3. Online Detection of HF under Simulated GIS Corona Discharge Fault
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, N.; Qiao, S.; Li, L.; Fan, X.; Zhou, W. Validity of HF and H2S as target gases of insulation monitoring in gas insulated switchgear. Trans. China Electrotech. Soc. 2017, 32, 202–211. [Google Scholar]
- Chen, K.; Wang, N.; Guo, M.; Zhao, X.; Qi, H.; Li, C.; Zhang, G.; Xu, L. Detection of SF6 gas decomposition component H2S based on fiber-optic photoacoustic sensing. Sens. Actuators B Chem. 2023, 378, 133174. [Google Scholar] [CrossRef]
- Ji, S.; Zhong, L.; Liu, K.; Li, J.; Cui, Y.; Wang, Y.; Guo, J.; Ji, G. Research status and development of SF6 decomposition components analysis under discharge and its application. Proc. CSEE 2015, 35, 2318–2332. [Google Scholar]
- Van Brunt, R.J.; Herron, J.T. Fundamental processes of SF6 decomposition and oxidation in glow and corona discharges. IEEE Trans. Electr. Insul. 1990, 25, 75–94. [Google Scholar] [CrossRef]
- IEC60480; Power Cables with Extruded Insulation and Their Accessories for Rated Voltages above 30 kV (Um = 36 kV) up to 150 kV (Um = 170 kV)-Test Methods and Requirements. International Electrotechnical Commission: Geneva, Switzerland, 2020.
- Liu, C.; Palanisamy, S.; Chen, S.; Wu, P.; Yao, L.; Lou, B. Mechanism of Formation of SF6 Decomposition Gas Products and its Identification by GC-MS and Electrochemical methods: A mini Review. Int. J. Electrochem. Sci. 2015, 10, 4223–4231. [Google Scholar] [CrossRef]
- Zhang, S.; Yao, Q.; Li, X. On-line Monitoring of HF Gas in High Voltage GIS Based on Flange Optical Fiber Sensing Technology. High Volt. Eng. 2019, 45, 402–409. [Google Scholar]
- Tang, F.; Liu, S.; Lv, Q.; Li, X.; He, S.; Zeng, X.; Yue, Y. Design and adsorption experiment of TDLAS sensor for HF detection in GIS. Laser Infred. 2020, 50, 543–550. [Google Scholar]
- Liu, Y. Research and Realization of HF Gas Detection Based by Tunable Diode Laser Spectroscopy. Master’s Thesis, Tianjin University, Tianjin, China, 2012. [Google Scholar]
- Yao, Q.; Yuan, Z.; Li, X.; Miao, Y.; Qiu, N. Using TDLAS Technology to Detect HF Gas in SF6 High-voltage Switches. Instrum. Tech. Sens. 2013, 5, 70–71+90. [Google Scholar]
- Tomberg, T.; Vainio, M.; Hieta, T.; Halonen, L. Sub-Parts-Per-Trillion Level Sensitivity in Trace Gas Detection by Cantilever-Enhanced Photo-Acoustic Spectroscopy. Sci. Rep. 2018, 8, 1848. [Google Scholar] [CrossRef]
- Palzer, S. Photoacoustic-Based Gas Sensing: A Review. Sensors 2020, 20, 2745. [Google Scholar] [CrossRef]
- Popa, C. Ethylene Measurements from Sweet Fruits Flowers Using Photoacoustic Spectroscopy. Molecules 2019, 24, 1144. [Google Scholar] [CrossRef] [PubMed]
- Mikkonen, T.; Luoma, D.; Hakulinen, H.; Genty, G.; Vanninen, P.; Toivonen, J. Detection of gaseous nerve agent simulants with broadband photoacoustic spectroscopy. J. Hazard. Mater. 2022, 440, 129851. [Google Scholar] [CrossRef]
- Wu, H.P.; Dong, L.; Yin, X.K.; Sampaolo, A.; Patimisco, P.; Ma, W.G.; Zhang, L.; Yin, W.B.; Xiao, L.T.; Spagnolo, V.; et al. Atmospheric CH4 measurement near a landfill using an ICL-based QEPAS sensor with V-T relaxation self-calibration. Sens. Actuators B Chem. 2019, 297, 126753. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.; Liu, H.; Zheng, C. The quantitative detection of SF6 characteristic decomposition component H2S based on cantilever enhanced photoacoustic spectrometry. Trans. China Electrotech. Soc. 2016, 31, 187–196. [Google Scholar]
- Chen, K.; Yu, Q.; Gong, Z.; Guo, M.; Qu, C. Ultra-High Sensitive Fiber-Optic Fabry-Perot Cantilever Enhanced Resonant Photoacoustic Spectroscopy. Sens. Actuators B Chem. 2018, 268, 205–209. [Google Scholar] [CrossRef]
- Duquesnoy, M.; Aoust, G.; Melkonian, J.-M.; Lévy, R.; Raybaut, M.; Godard, A. Quartz Enhanced Photoacoustic Spectroscopy Based on a Custom Quartz Tuning Fork. Sensors 2019, 19, 1362. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Si, G.; Ning, Z.; Liu, J.; Fang, Y.; Si, B.; Cheng, Z.; Yang, C. Highly Sensitive Sphere-Tube Coupled Photoacoustic Cell Suitable for Detection of a Variety of Trace Gases: NO2 as an Example. Sensors 2022, 22, 281. [Google Scholar] [CrossRef] [PubMed]
- Rothman, L.S.; Gordon, I.E.; Babikov, Y.; Barbe, A.; Chris Benner, D.; Bernath, P.F.; Birk, M.; Bizzocchi, L.; Boudon, V.; Brown, L.R.; et al. The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2013, 130, 4–50. [Google Scholar] [CrossRef]
- Liu, B.; Tang, Y.; Chen, W. Analysis on Resonant Photoacoustic Cell in Photoacoustic Spectroscopy Monitoring System for Detecting Trace Gases in Transformer Oil. High Volt. Appar. 2014, 50, 42–47. [Google Scholar]
- Bijnen, F.G.C.; Reuss, J.; Harren, F.J.M. Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection. Rev. Sci. Instrum. 1996, 67, 2914–2923. [Google Scholar] [CrossRef]
- Liu, B. First-Order Longitudinal Photoacoustic Cell and Multi-Component Gas Detection Characteristics Based on Photoacoustic Spectroscopy. Master’s Thesis, College of Electrical Engineering of Chongqing University, Chongqing, China, 2011. [Google Scholar]
- Schramm, D.U.; Sthel, M.S.; Silva, M.G.D.; Carneiro, L.O.; Junior, A.J.S.; Souza, A.P. Application of laser photoacoustic spectroscopy for the analysis of gas samples emitted by diesel engines. Infrared Phys. Technol. 2003, 44, 263–269. [Google Scholar] [CrossRef]
Material | Density (g·cm−3) | Thermal Conductivity (W·m−1·K−1) | Poisson Ratio (μ) |
---|---|---|---|
Copper | 8.43 | 108.9 | 0.32 |
Red copper | 8.92 | 386.4 | 0.35 |
Aluminum alloy | 2.90 | 167 | 0.34 |
Stainless steel | 7.93 | 16.2 | 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, L.; Zhao, X.; Li, K. Online Detection of Hydrogen Fluoride under Corona Discharge in Gas-Insulated Switchgear Based on Photoacoustic Spectroscopy. Sensors 2024, 24, 2806. https://doi.org/10.3390/s24092806
Wan L, Zhao X, Li K. Online Detection of Hydrogen Fluoride under Corona Discharge in Gas-Insulated Switchgear Based on Photoacoustic Spectroscopy. Sensors. 2024; 24(9):2806. https://doi.org/10.3390/s24092806
Chicago/Turabian StyleWan, Liujie, Xiaohe Zhao, and Kang Li. 2024. "Online Detection of Hydrogen Fluoride under Corona Discharge in Gas-Insulated Switchgear Based on Photoacoustic Spectroscopy" Sensors 24, no. 9: 2806. https://doi.org/10.3390/s24092806
APA StyleWan, L., Zhao, X., & Li, K. (2024). Online Detection of Hydrogen Fluoride under Corona Discharge in Gas-Insulated Switchgear Based on Photoacoustic Spectroscopy. Sensors, 24(9), 2806. https://doi.org/10.3390/s24092806