Adaptive Weighted Error-Correction Method Based on the Error Distribution Characteristics of Multi-Channel Alignment
Abstract
:1. Introduction
2. Theoretical Model
3. Experiment Results and Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, R.; Cheng, J.; Wang, F. Lithography Equipment. In Handbook of Integrated Circuit Industry; Springer: Singapore, 2024; pp. 1327–1359. [Google Scholar] [CrossRef]
- Wang, X. Integrated Circuit and Lithographic Tool; Science Press: Beijing, China, 2020. [Google Scholar]
- Levinson, H.J. Principles of Lithography; SPIE Press: Bellingham, WA, USA, 2005; Volume 146. [Google Scholar]
- Peterson, J.; Rusk, G.; Veeraraghavan, S.; Huang, K.; Koffas, T.; Kimani, P.; Sinha, J. Lithography overlay control improvement using patterned wafer geometry for sub-22nm technology nodes. In Proceedings of the Metrology, Inspection, and Process Control for Microlithography XXIX, San Jose, CA, USA, 23–26 February 2015; SPIE: Bellingham, WA, USA, 2015; Volume 9424, pp. 226–236. [Google Scholar]
- Jin, H.; Qi, Y. Review of overlay error and controlling methods in alignment system for advanced lithography. In Proceedings of the Thirteenth International Conference on Information Optics and Photonics (CIOP 2022), Xi’an, China, 7–10 August 2022; SPIE: Bellingham, WA, USA, 2022; Volume 12478, pp. 1002–1017. [Google Scholar]
- Menchtchikov, B.; Socha, R.; Raghunathan, S.; Lyulina, I.; Schoonewelle, H.; Tinnemans, P.; Tuffy, P.; Leray, P.; Jehoul, C. Computational scanner wafer mark alignment. In Proceedings of the Optical Microlithography XXX, San Jose, CA, USA, 28 February–2 March 2017; SPIE: Bellingham, WA, USA, 2017; Volume 10147, pp. 399–407. [Google Scholar]
- Verstappen, L.; Mos, E.; Wardenier, P.; Megens, H.; Schmitt-Weaver, E.; Bhattacharyya, K.; Adam, O.; Grzela, G.; van Heijst, J.; Willems, L.; et al. Holistic overlay control for multi-patterning process layers at the 10nm and 7nm nodes. In Proceedings of the Metrology, Inspection, and Process Control for Microlithography XXX, San Jose, CA, USA, 22–25 February 2016; SPIE: Bellingham, WA, USA, 2016; Volume 9778, pp. 645–652. [Google Scholar]
- Gorhad, K.; Sharoni, O.; Dmitriev, V.; Cohen, A.; van Haren, R.; Roelofs, C.; Cekli, H.E.; Gallagher, E.; Leray, P.; Beyer, D.; et al. Co-optimization of RegC and TWINSCAN corrections to improve the intra-field on-product overlay performance. In Proceedings of the Metrology, Inspection, and Process Control for Microlithography XXX, San Jose, CA, USA, 22–25 February 2016; SPIE: Bellingham, WA, USA, 2016; Volume 9778, pp. 1034–1054. [Google Scholar]
- Mulkens, J.; Hinnen, P.; Kubis, M.; Padiy, A.; Benschop, J. Holistic optimization architecture enabling sub-14-nm projection lithography. J. Micro/Nanolithogr. MEMS MOEMS 2014, 13, 011006. [Google Scholar] [CrossRef]
- de Graaf, R.; Weichselbaum, S.; Droste, R.; McLaren, M.; Koek, B.; de Boeij, W. NXT: 1980Di immersion scanner for 7nm and 5nm production nodes. In Proceedings of the Optical Microlithography XXIX, San Jose, CA, USA, 23–25 February 2016; SPIE: Bellingham, WA, USA, 2016; Volume 9780, pp. 98–106. [Google Scholar]
- Ma, J.; Yu, M.; Lambregts, C.J.H.; Tsiachris, S.; Böcker, P.; Kim, J.Y.; Ma, W.K.; Han, S.; ha Park, C.; Kim, K.; et al. Holistic alignment approach for on-product overlay improvement on DUV lithography process with combined solutions. In Proceedings of the Optical Microlithography XXXIII, San Jose, CA, USA, 25–26 February 2020. [Google Scholar]
- Pan, S.; Wang, S.; Xu, J.; Fan, L.; Yuan, F.; Shu, T.; Dai, F.; Yan, X.; Bu, Y.; Wang, X. Sub-pixel position estimation algorithm based on Gaussian fitting and sampling theorem interpolation for wafer alignment. Appl. Opt. 2021, 60, 9607–9618. [Google Scholar] [CrossRef] [PubMed]
- Jeong, I.H.; Kim, H.S.; Kong, Y.O.; Song, J.H.; Ju, J.W.; Kim, Y.S.; Lambregts, C.; Yu, M.; Rahman, R.; Karssemeijer, L.; et al. Improved wafer alignment model algorithm for better on-product overlay. In Proceedings of the Optical Microlithography XXXII, San Jose, CA, USA, 26–27 February 2019; SPIE: Bellingham, WA, USA, 2019; Volume 10961, pp. 41–50. [Google Scholar]
- Navarro, R.; Keij, S.; den Boef, A.J.; Schets, S.; van Bilsen, F.; Simons, G.; Schuurhuis, R.; Burghoorn, J. Extended ATHENA alignment performance and application for the 100-nm technology node. In Proceedings of the Metrology, Inspection, and Process Control for Microlithography XV, San Jose, CA, USA, 26 February–1 March 2001; SPIE: Bellingham, WA, USA, 2001; Volume 4344, pp. 682–694. [Google Scholar]
- Du, J.; Dai, F.; Wang, X. Alignment mark optimization for improving signal-to-noise ratio of wafer alignment signal. Appl. Opt. 2019, 58, 9–14. [Google Scholar] [CrossRef] [PubMed]
- den Boef, A.J. Optical wafer metrology sensors for process-robust CD and overlay control in semiconductor device manufacturing. Surf. Topogr. Metrol. Prop. 2016, 4, 023001. [Google Scholar] [CrossRef]
- Leray, P.; Jehoul, C.; Socha, R.; Menchtchikov, B.; Raghunathan, S.; Kent, E.; Schoonewelle, H.; Tinnemans, P.; Tuffy, P.; Belen, J.; et al. Improving scanner wafer alignment performance by target optimization. In Proceedings of the Metrology, Inspection, and Process Control for Microlithography XXX, San Jose, CA, USA, 22–25 February 2016; SPIE: Bellingham, WA, USA, 2016; Volume 9778, pp. 827–833. [Google Scholar]
- Prasad, K.J.; Rajan, D.A.; Tan, Y.K.; Sun, G.P.; Morgan, S.; Phillips, M.; Ng, B. W-CMP alignment using ASML’s ATHENA system on an I-line stepper. In Proceedings of the Metrology, Inspection, and Process Control for Microlithography XV, San Jose, CA, USA, 26 February–1 March 2001; SPIE: Bellingham, WA, USA, 2001; Volume 4344, pp. 79–88. [Google Scholar]
- Yen, L.S.; Said, S.M.; Soin, N.; Ibrahim, K.; Sang, K.B. Study on alignment capability and overlay performance in 130nm BEOL lithography process. In Proceedings of the 2006 IEEE International Conference on Semiconductor Electronics, Kuala Lumpur, Malaysia, 29 October–1 December 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 603–609. [Google Scholar]
- Dirksen, P.; Juffermans, C.A.; Leeuwestein, A.; Mutsaers, K.A.; Nuijs, T.A.; Pellens, R.J.; Wolters, R.; Gemen, J. Effect of processing on the overlay performance of a wafer stepper. In Proceedings of the Metrology, Inspection, and Process Control for Microlithography XI, Santa Clara, CA, USA, 10–12 March 1997; SPIE: Bellingham, WA, USA, 1997; Volume 3050, pp. 102–113. [Google Scholar]
- Neijzen, J.H.; Morton, R.D.; Dirksen, P.; Megens, H.J.; Bornebroek, F. Improved wafer stepper alignment performance using an enhanced phase grating alignment system. In Proceedings of the Metrology, Inspection, and Process Control for Microlithography XIII, Santa Clara, CA, USA, 15–18 March 1999; SPIE: Bellingham, WA, USA, 1999; Volume 3677, pp. 382–394. [Google Scholar]
- Menchtchikov, B.; Socha, R.; Zheng, C.; Raghunathan, S.; Aarts, I.; Shome, K.; Lee, J.; de Ruiter, C.; Rijpstra, M.; Megens, H.; et al. Reduction in overlay error from mark asymmetry using simulation, ORION, and alignment models. In Proceedings of the Optical Microlithography XXXI, San Jose, CA, USA, 27 February–1 March 2018; SPIE: Bellingham, WA, USA, 2018; Volume 10587, pp. 81–90. [Google Scholar]
- Zhang, J.; Chen, X.; Yang, T.; Liu, S. X-ray-based overlay metrology using reciprocal space slicing analysis. Opt. Lett. 2023, 48, 6380–6383. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, H.C.; Wu, M.R.; Huang, X.T. Designing Highly Precise Overlay Targets for Asymmetric Sidewall Structures Using Quasi-Periodic Line Widths and Finite-Difference Time-Domain Simulation. Sensors 2023, 23, 4482. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, H.C.; Cheng, J.M.; Yeh, Y.C. Optimized wavelength selection for diffraction-based overlay measurement by minimum asymmetry factor variation with finite-difference time-domain simulation. Appl. Opt. 2022, 61, 1389–1397. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, H.C. Improving the cross-layer misalignment measurement accuracy by pattern-center shift induced error calibration. Opt. Lasers Eng. 2022, 155, 107051. [Google Scholar] [CrossRef]
- Shi, Y.; Li, K.; Chen, X.; Wang, P.; Gu, H.; Jiang, H.; Zhang, C.; Liu, S. Multiobjective optimization for target design in diffraction-based overlay metrology. Appl. Opt. 2020, 59, 2897–2905. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Wang, Y.; Li, J.; Ding, X.; Lu, Z. Effect of phase grating asymmetry on position measurement accuracy. Acta Opt. Sin. 2021, 41, 1905001. [Google Scholar]
- Megens, H.; Brinkhof, R.; Aarts, I.; Kok, H.; Karssemeijer, L.; ten Haaf, G.; Lee, S.; Slotboom, D.; de Ruiter, C.; Lyulina, I.; et al. Holistic feedforward control for the 5 nm logic node and beyond. In Proceedings of the Optical Microlithography XXXII, San Jose, CA, USA, 26–27 February 2019; SPIE: Bellingham, WA, USA, 2019; Volume 10961, pp. 119–131. [Google Scholar]
- Keij, S.; Setija, I.D.; van der Zouw, G.; Ebert, E.W. Advances in phase-grating-based wafer alignment systems. In Proceedings of the Metrology, Inspection, and Process Control for Microlithography XIX, San Jose, CA, USA, 28 February–3 March 2005. [Google Scholar]
- Miyasaka, M.; Saito, H.; Tamura, T.; Uchiyama, T.; Hinnen, P.C.; Lee, H.W.; van Kemenade, M.; Shahrjerdy, M.; van Leeuwen, R. The application of SMASH alignment system for 65–55-nm logic devices. In Proceedings of the Metrology, Inspection, and Process Control for Microlithography XXI, San Jose, CA, USA, 26 February–1 March 2007. [Google Scholar]
- Aarts, I. Advancements in Process-Robust Wafer Alignment; SPIE: Bellingham, WA, USA, 2018. [Google Scholar]
- Den Boef, A.; Hoogerland, M.; Gajdeezko, B. Alignment System and Method. U.S. Patent US7564534B2, 15 January 2008. [Google Scholar]
- Du, J.; Dai, F.; Wang, X. Calibration method for alignment error caused by asymmetric deformation of mark and its application in overlay measurement. Chin. J. Lasers 2019, 46, 0704004. [Google Scholar]
- Du, J.; Dai, F.; Bu, Y.; Wang, X. Calibration method of overlay measurement error caused by asymmetric mark. Appl. Opt. 2018, 57, 9814–9821. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Li, J.; Wang, Y.; Ding, M.; Zhong, L. Analytic design of segmented phase grating for optical sensing in high-precision alignment system. Sensors 2021, 21, 3805. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Roy, S.; El Gawhary, O.; Pereira, S.F.; Coene, W.M.; Urbach, H.P. Towards Grating Reconstruction in Coherent Fourier Scatterometry. In Proceedings of the Fringe 2013: 7th International Workshop on Advanced Optical Imaging and Metrology; Springer: Berlin/Heidelberg, Germany, 2014; pp. 591–594. [Google Scholar]
- Wang, N.; Jiang, W.; Zhang, Y. Moiré-based sub-nano misalignment sensing via deep learning for lithography. Opt. Lasers Eng. 2021, 143, 106620. [Google Scholar] [CrossRef]
- Zhang, L.; Dong, L.; Su, X.; Wei, Y. Characteristic study of image-based alignment for increasing accuracy in lithography application. J. Vac. Sci. Technol. B 2017, 35, 061601. [Google Scholar] [CrossRef]
- Wu, Y.; Jin, S.; Jing, X.; Tian, Y.; Liang, P.; Wang, L.; Dong, Q. Numerical calculation of the accuracy of approximate analysis methods for binary rectangular groove diffraction phase grating. Opt. Eng. 2012, 51, 128001. [Google Scholar] [CrossRef]
- Pistor, T.V.; Socha, R.J. Rigorous electromagnetic simulation of stepper alignment. In Proceedings of the Metrology, Inspection, and Process Control for Microlithography XVI, Santa Clara, CA, USA, 4–7 March 2002. [Google Scholar]
- Li, L.; Chen, C.; Zeng, H.; Hu, S.; Zhang, L.; Su, Y.; Wei, Y.; Ye, T.; Wang, Y.; Xue, J. Analysis of diffraction-based wafer alignment rejection for thick aluminum process. J. Vac. Sci. Technol. B 2022, 40, 022603. [Google Scholar] [CrossRef]
Optimal Weight Values | Side Wall | Top | Bottom | Round Corner | Wedge Corner | Combination |
---|---|---|---|---|---|---|
0.82 | 0.10 | 0.04 | −0.17 | −0.29 | 0.08 | |
−0.98 | 0.57 | 0.06 | 1.19 | 1.16 | 0.09 | |
0.56 | 0.16 | −0.14 | −0.08 | 1.05 | 0.42 | |
−1.36 | −0.12 | −0.10 | −0.15 | −0.58 | −1.17 | |
−1.25 | 0.04 | 0.01 | 0.09 | −0.17 | −0.04 | |
2.23 | −0.29 | 0.09 | 0.01 | −0.55 | 0.47 | |
0.55 | −0.05 | 0.91 | 0.05 | 1.76 | 0.02 | |
0.43 | 0.60 | 0.14 | 0.06 | −1.38 | 1.13 |
Original | Side Wall | Top | Bottom | Wedge Corner | Round Corner | Combination | Self-Adaptive | |
---|---|---|---|---|---|---|---|---|
RMS (nm) | 49.8 | 44.9 | 25.5 | 19.9 | 128.4 | 42.6 | 14.0 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, P.; Wang, W.; Wu, B.; Zou, L.; Zhan, T.; Tan, J.; Ding, X. Adaptive Weighted Error-Correction Method Based on the Error Distribution Characteristics of Multi-Channel Alignment. Sensors 2024, 24, 2756. https://doi.org/10.3390/s24092756
Song P, Wang W, Wu B, Zou L, Zhan T, Tan J, Ding X. Adaptive Weighted Error-Correction Method Based on the Error Distribution Characteristics of Multi-Channel Alignment. Sensors. 2024; 24(9):2756. https://doi.org/10.3390/s24092756
Chicago/Turabian StyleSong, Peiyu, Weibo Wang, Biwei Wu, Limin Zou, Tianpeng Zhan, Jiubin Tan, and Xuemei Ding. 2024. "Adaptive Weighted Error-Correction Method Based on the Error Distribution Characteristics of Multi-Channel Alignment" Sensors 24, no. 9: 2756. https://doi.org/10.3390/s24092756
APA StyleSong, P., Wang, W., Wu, B., Zou, L., Zhan, T., Tan, J., & Ding, X. (2024). Adaptive Weighted Error-Correction Method Based on the Error Distribution Characteristics of Multi-Channel Alignment. Sensors, 24(9), 2756. https://doi.org/10.3390/s24092756