Three-Dimensional Image Visualization under Photon-Starved Conditions Using N Observations and Statistical Estimation
Abstract
:1. Introduction
2. N-Observation Photon-Counting Integral Imaging
2.1. Integral Imaging
2.2. Photon-Counting Imaging
2.3. Photon-Counting Integral Imaging
2.4. N-Observation Photon-Counting Integral Imaging
3. Experimental Results
3.1. Experimental Setup
3.2. Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MLE | maximum likelihood estimation; |
PCE | peak-to-correlation energy; |
PSNR | peak signal-to-noise ratio; |
PSR | peak sidelobe ratio; |
SAII | synthetic aperture integral imaging; |
SSIM | structural similarity; |
VCR | volumetric computational reconstruction. |
References
- Stitch, M.L.; Woodburry, E.J.; Morse, J.H. Optical ranging system uses laser transmitter. Electronics 1961, 34, 51–53. [Google Scholar]
- Wheatstone, C. Contributions to the physiology of vision—Part the first. On some remarkable, and hitherto unobserved, phenomena of binocular vision. Philos. Trans. R. Soc. Lond. 1838, 128, 371–394. [Google Scholar]
- Dodgson, N.A. Autostereoscopic 3D displays. Computer 2005, 38, 31–36. [Google Scholar] [CrossRef]
- Chen, C.H.; Huang, Y.P.; Chuang, S.C.; Wu, C.L.; Shieh, H.P.D.; Mphepo, W.; Hsieh, C.T.; Hsu, S.C. Liquid crystal panel for highefficiency barrier type autostereoscopic three-dimensional displays. Appl. Opt. 2009, 48, 3446–3454. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.H.; Zhao, W.X.; Tao, Y.H.; Li, D.H.; Zhao, R.L. Stereo viewing zone in parallax-barrier-based autostereoscopic display. Optik 2010, 121, 2008–2011. [Google Scholar] [CrossRef]
- Hong, J.; Kim, Y.; Choi, H.J.; Hahn, J.; Park, J.H.; Kim, H.; Min, S.W.; Chen, N.; Lee, B. Three-dimensional display technologies of recent interest: Principles, status, and issues [Invited]. Appl. Opt. 2011, 50, 87–115. [Google Scholar] [CrossRef] [PubMed]
- Gabor, D. A new microscopic principle. Nature 1948, 161, 777–778. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Lyu, M.; Situ, G. eHoloNet: A learning-based end-to-end approach for in-line digital holographic reconstruction. Opt. Exp. 2018, 26, 22603–22614. [Google Scholar] [CrossRef]
- Ren, Z.; Xu, Z.; Lam, E.Y. End-to-end deep learning framework for digital holographic reconstruction. Adv. Photonics 2019, 1, 016004. [Google Scholar] [CrossRef]
- Shevkunov, I.; Katkovnik, V.; Claus, D.; Pedrini, G.; Petrov, N.V.; Egiazarian, K. Spectral object recognition in hyperspectral holography with complex-domain denoising. Sensors 2019, 19, 5188. [Google Scholar] [CrossRef]
- Bordbar, B.; Zhou, H.; Banerjee, P.P. 3D object recognition through processing of 2D holograms. Appl. Opt. 2019, 58, G197–G203. [Google Scholar] [CrossRef] [PubMed]
- Lippmann, G. La Photographie Integrale. Comp. Ren. Acad. Des Sci. 1908, 146, 446–451. [Google Scholar]
- Burckhardt, C.B. Optimum parameters and resolution limitation of integral photography. J. Opt. Soc. Am. 1968, 58, 71–76. [Google Scholar] [CrossRef]
- Arai, J.; Okano, F.; Hoshino, H.; Yuyama, I. Gradient index lens array method based on real time integral photography for three dimensional images. Appl. Opt. 1998, 37, 2034–2045. [Google Scholar] [CrossRef]
- Jang, J.-S.; Javidi, B. Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics. Opt. Lett. 2002, 27, 324–326. [Google Scholar] [CrossRef]
- Jang, J.-S.; Javidi, B. Three-dimensional synthetic aperture integral imaging. Opt. Lett. 2002, 27, 1144–1146. [Google Scholar] [CrossRef]
- Jang, J.-S.; Javidi, B. Improvement of viewing angle in integral imaging by use of moving lenslet arrays with low fill factor. Appl. Opt. 2003, 42, 1996–2002. [Google Scholar] [CrossRef]
- Jang, J.-S.; Javidi, B. Large depth-of-focus time-multiplexed three-dimensional integral imaging by use of lenslets with nonuniform focal lengths and aperture sizes. Opt. Lett. 2003, 28, 1924–1926. [Google Scholar] [CrossRef]
- Hong, S.-H.; Jang, J.-S.; Javidi, B. Three-dimensional volumetric object reconstruction using computational integral imaging. Opt. Exp. 2004, 12, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Corral, M.; Javidi, B.; Martinez-Cuenca, R.; Saavedra, G. Formation of real, orthoscopic integral images by smart pixel mapping. Opt. Exp. 2005, 13, 9175–9180. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Cuenca, R.; Saavedra, G.; Martinez-Corral, M.; Javidi, B. Extended depth-of-field 3-D display and visualization by combination of amplitude-modulated microlenses and deconvolution tools. IEEE J. Disp. Tech. 2005, 1, 321–327. [Google Scholar] [CrossRef]
- Martinez-Cuenca, R.; Pons, A.; Saavedra, G.; Martinez-Corral, M.; Javidi, B. Optically-corrected elemental images for undistorted integral image display. Opt. Exp. 2006, 14, 9657–9663. [Google Scholar] [CrossRef] [PubMed]
- Stern, A.; Javidi, B. Three-dimensional image sensing, visualization, and processing using integral imaging. Proc. IEEE 2006, 94, 591–607. [Google Scholar] [CrossRef]
- Levoy, M. Light fields and computational imaging. IEEE Comput. Mag. 2006, 39, 46–55. [Google Scholar] [CrossRef]
- Martinez-Cuenca, R.; Saavedra, G.; Martinez-Corral, M.; Javidi, B. Progress in 3-D multiperspective display by integral imaging. Proc. IEEE 2009, 97, 1067–1077. [Google Scholar] [CrossRef]
- Cho, M.; Daneshpanah, M.; Moon, I.; Javidi, B. Three-Dimensional Optical Sensing and Visualization Using Integral Imaging. Proc. IEEE 2010, 99, 556–575. [Google Scholar]
- Cho, B.; Kopycki, P.; Martinez-Corral, M.; Cho, M. Computational volumetric reconstruction of integral imaging with improved depth resolution considering continuously non-uniform shifting pixels. Opt. Laser Eng. 2018, 111, 114–121. [Google Scholar] [CrossRef]
- Tavakoli, B.; Javidi, B.; Watson, E. Three-dimensional visualization by photon counting computational integral imaging. Opt. Exp. 2008, 16, 4426–4436. [Google Scholar] [CrossRef]
- Jung, J.; Cho, M.; Dey, D.-K.; Javidi, B. Three-dimensional photon counting integral using Bayesian estimation. Opt. Lett. 2010, 35, 1825–1827. [Google Scholar] [CrossRef]
- Aloni, D.; Stern, A.; Javidi, B. Three-dimensional photon counting integral imaging reconstruction using penalized maximum likelihood expectation maximization. Opt. Exp. 2011, 19, 19681–19687. [Google Scholar] [CrossRef]
- Cho, M.; Javidi, B. Three-dimensional photon counting integral imaging using moving array lens technique. Opt. Lett. 2012, 37, 1487–1489. [Google Scholar] [CrossRef] [PubMed]
- Markman, A.; Javidi, B.; Tehranipoor, M. Photon-counting security tagging and verification using optically encoded QR codes. IEEE. Photonics J. 2013, 6, 1–9. [Google Scholar] [CrossRef]
- Markman, A.; Javidi, B. Full-phase photon-counting double-random-phase encryption. JOSA A 2014, 31, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Cho, M. Three-dimensional color photon counting microscopy using Bayesian estimation with adaptive priori information. Chin. Opt. Lett. 2015, 13, 070301. [Google Scholar]
- Rajput, S.K.; Kumar, D.; Nishchal, N.K. Photon counting imaging and phase mask multiplexing for multiple images authentication and digital hologram security. Appl. Opt. 2015, 54, 1657–1666. [Google Scholar] [CrossRef]
- Gupta, A.K.; Nishchal, N.K. Low-light phase imaging using in-line digital holography and the transport of intensity equation. J. Opt. 2021, 23, 025701. [Google Scholar] [CrossRef]
- Jang, J.-Y.; Cho, M. Lensless three-dimensional imaging under photon-starved conditions. Sensors 2023, 23, 2336. [Google Scholar] [CrossRef]
- Goodman, J.W. Statistical Optics, 2nd ed.; Wiley: New York, NY, USA, 2015. [Google Scholar]
- Javidi, B. Nonlinear joint power spectrum based optical correlation. Appl. Opt. 1989, 28, 2358–2367. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.-W.; Lee, M.-C.; Cho, M. Three-Dimensional Image Visualization under Photon-Starved Conditions Using N Observations and Statistical Estimation. Sensors 2024, 24, 1731. https://doi.org/10.3390/s24061731
Kim H-W, Lee M-C, Cho M. Three-Dimensional Image Visualization under Photon-Starved Conditions Using N Observations and Statistical Estimation. Sensors. 2024; 24(6):1731. https://doi.org/10.3390/s24061731
Chicago/Turabian StyleKim, Hyun-Woo, Min-Chul Lee, and Myungjin Cho. 2024. "Three-Dimensional Image Visualization under Photon-Starved Conditions Using N Observations and Statistical Estimation" Sensors 24, no. 6: 1731. https://doi.org/10.3390/s24061731
APA StyleKim, H.-W., Lee, M.-C., & Cho, M. (2024). Three-Dimensional Image Visualization under Photon-Starved Conditions Using N Observations and Statistical Estimation. Sensors, 24(6), 1731. https://doi.org/10.3390/s24061731