A Comprehensive Dataset of Surface Electromyography and Self-Perceived Fatigue Levels for Muscle Fatigue Analysis
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Instrumentation and Data Collection
2.3. Experimental Protocol
3. Results
3.1. Data Records
3.1.1. sEMG Data
3.1.2. Participant’s Self Perceived Fatigue Level
4. Discussion
4.1. Technical Validation
Fatigue Indicator Analysis
4.2. Code Availability
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
sEMG | Surface Electromyography |
RMS | Root Mean Square |
MDF | Median Frequency |
MNF | Mean Frequency |
MPF | Mean Power Frequency |
BB | Biceps Branchii |
DA | Deltoid Anterior |
DP | Deltoid Anterior |
DM | Deltoid Medius |
Appendix A
Participant | Gender | Age (years) | Height (cm) | Weight (kg) | Workouts per Week | Had Coffee Today? |
---|---|---|---|---|---|---|
S01 | F | 27 | 170 | 63.5 | 3 | Yes |
S02 | F | 23 | 153.5 | 46.8 | 2 | Yes |
S03 | M | 22 | 184 | 83 | 4 | Yes |
S04 | F | 23 | 167 | 57 | 6 | Yes |
S05 | M | 33 | 174 | 68 | 2 | Yes |
S06 | M | 24 | 177 | 77 | 5 | Yes |
S07 | M | 20 | 188 | 84 | 2 | No |
S08 | M | 27 | 174 | 58 | 2 | Yes |
S09 | F | 23 | 162 | 65 | 4 | Yes |
S010 | F | 25 | 163 | 56 | 0 | Yes |
S011 | M | 22 | 165 | 60 | 6 | No |
S012 | M | 20 | 181 | 72 | 0 | No |
S013 | M | 22 | 188 | 69 | 0 | No |
Participant | Total Time (min) |
---|---|
S01 | 66.14 |
S02 | 57.65 |
S03 | 77.10 |
S04 | 39.13 |
S05 | 46.14 |
S06 | 52.08 |
S07 | 41.02 |
S08 | 84.29 |
S09 | 77.03 |
S010 | 43.69 |
S011 | 56.14 |
S012 | 67.83 |
S013 | 91.65 |
Total | 800.01 |
References
- Makaram, N.; Karthick, P.A.; Swaminathan, R. Analysis of Dynamics of EMG Signal Variations in Fatiguing Contractions of Muscles Using Transition Network Approach. IEEE Trans. Instrum. Meas. 2021, 70, 1–8. [Google Scholar] [CrossRef]
- Ma, L.; Chablat, D.; Bennis, F.; Zhang, W. A new simple dynamic muscle fatigue model and its validation. Int. J. Ind. Ergon. 2009, 39, 211–220. [Google Scholar] [CrossRef]
- Bevan, S. Economic impact of musculoskeletal disorders (MSDs) on work in Europe. Best Pract. Res. Clin. Rheumatol. 2015, 29, 356–373. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.J.; Qin, Z.; Wang, P.Y.; Sun, Y.; Liu, X. Muscle fatigue: General understanding and treatment. Exp. Mol. Med. 2017, 49, e384. [Google Scholar] [CrossRef] [PubMed]
- Aquino, M.; Petrizzo, J.; Otto, R.M.; Wygand, J. The Impact of Fatigue on Performance and Biomechanical Variables—A Narrative Review with Prospective Methodology. Biomechanics 2022, 2, 513–524. [Google Scholar] [CrossRef]
- Mugnosso, M.; Marini, F.; Holmes, M.; Morasso, P.; Zenzeri, J. Muscle fatigue assessment during robot-mediated movements. J. NeuroEng. Rehabil. 2018, 15, 119. [Google Scholar] [CrossRef] [PubMed]
- Phinyomark, A.; Phukpattaranont, P.; Limsakul, C. Feature Reduction and Selection for EMG Signal Classification. Expert Syst. Appl. 2012, 39, 7420–7431. [Google Scholar] [CrossRef]
- Terracina, D.; Moniri, A.; Rodriguez-Manzano, J.; Strutton, P.H.; Georgiou, P. Real-Time Forecasting and Classification of Trunk Muscle Fatigue Using Surface Electromyography. In Proceedings of the 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS), Nara, Japan, 17–19 October 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Peternel, L.; Tsagarakis, N.; Caldwell, D.; Ajoudani, A. Adaptation of robot physical behaviour to human fatigue in human-robot co-manipulation. In Proceedings of the 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), Cancun, Mexico, 15–17 November 2016; pp. 489–494. [Google Scholar] [CrossRef]
- Feng, Z.; Wang, Y.; Liu, L. Muscle fatigue detection method based on feature extraction and deep learning. In Proceedings of the 2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP), Xi’an, China, 15–17 April 2022; pp. 97–100. [Google Scholar] [CrossRef]
- Ebied, A.; Awadallah, A.M.; Abbass, M.A.; El-Sharkawy, Y. Upper Limb Muscle Fatigue Analysis Using Multi-channel Surface EMG. In Proceedings of the 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES), Giza, Egypt, 24–26 October 2020; pp. 423–427. [Google Scholar] [CrossRef]
- Ebied, A.; Awadallah, A.M.; Abbass, M.A.; El-Sharkawy, Y. Multi-channel Surface EMG Dataset for Fatigue analysis. Zenodo 2021. [Google Scholar] [CrossRef]
- Lim, J.; Lu, L.; Goonewardena, K.; Liu, J.Z.; Tan, Y. Assessment of Self-report, Palpation, and Surface Electromyography Dataset During Isometric Muscle Contraction. Sci. Data 2024, 11, 208. [Google Scholar] [CrossRef]
- Seniam Project. Available online: http://www.seniam.org/ (accessed on 30 September 2024).
- Trigno® Wireless Biofeedback System. Available online: https://delsys.com/downloads/USERSGUIDE/trigno/wireless-biofeedback-system.pdf. (accessed on 28 September 2024).
- Cerqueira, S.; Boas, R.V.; Figueiredo, J.; Santos, C. A Dataset of sEMG and Self-Perceived Fatigue Levels for Muscle Fatigue Analysis. Zenodo 2024. [Google Scholar] [CrossRef]
- D’Alessio, T.; Conforto, S. Extraction of the envelope from surface EMG signals. IEEE Eng. Med. Biol. Mag. 2001, 20, 55–61. [Google Scholar] [CrossRef]
- Phinyomark, A.; Thongpanja, S.; Hu, H.; Phukpattaranont, P.; Limsakul, C. The Usefulness of Mean and Median Frequencies in Electromyography Analysis. In Computational Intelligence in Electromyography Analysis—A Perspective on Current Applications and Future Challenges; IntechOpen: London, UK, 2012; pp. 195–220. [Google Scholar] [CrossRef]
- De Luca, C.J. Myoelectrical manifestations of localized muscular fatigue in humans. Crit. Rev. Biomed. Eng. 1984, 11, 251–279. [Google Scholar] [PubMed]
- Shukla, U.; Saxena, G.J.; Kumar, M.; Bafila, A.S.; Pundir, A.; Singh, S. An Improved Decision Support System for Identification of Abnormal EEG Signals Using a 1D Convolutional Neural Network and Savitzky-Golay Filtering. IEEE Access 2021, 9, 163492–163503. [Google Scholar] [CrossRef]
- Wang, R.; Fukuda, D.; Stout, J.; IV, E.; Miramonti, A.; Townsend, J.; Mangine, G.; Jajtner, A.; Wells, A.; Gonzalez, A.; et al. Evaluation of EMG Frequency Domain Changes during a Three-Minute Maximal Effort Cycling Test. In Proceedings of the American College of Sports Medicine Annual Meeting, Orlando, FL, USA, 27–31 May 2014. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerqueira, S.M.; Vilas Boas, R.; Figueiredo, J.; Santos, C.P. A Comprehensive Dataset of Surface Electromyography and Self-Perceived Fatigue Levels for Muscle Fatigue Analysis. Sensors 2024, 24, 8081. https://doi.org/10.3390/s24248081
Cerqueira SM, Vilas Boas R, Figueiredo J, Santos CP. A Comprehensive Dataset of Surface Electromyography and Self-Perceived Fatigue Levels for Muscle Fatigue Analysis. Sensors. 2024; 24(24):8081. https://doi.org/10.3390/s24248081
Chicago/Turabian StyleCerqueira, Sara M., Rita Vilas Boas, Joana Figueiredo, and Cristina P. Santos. 2024. "A Comprehensive Dataset of Surface Electromyography and Self-Perceived Fatigue Levels for Muscle Fatigue Analysis" Sensors 24, no. 24: 8081. https://doi.org/10.3390/s24248081
APA StyleCerqueira, S. M., Vilas Boas, R., Figueiredo, J., & Santos, C. P. (2024). A Comprehensive Dataset of Surface Electromyography and Self-Perceived Fatigue Levels for Muscle Fatigue Analysis. Sensors, 24(24), 8081. https://doi.org/10.3390/s24248081