Pulse Shape Discrimination of n/γ in Liquid Scintillator at PMT Nonlinear Region Using Artificial Neural Network Technique
Abstract
1. Introduction
2. Experimental Setup
3. Measurements
4. ANN Training
5. Results
6. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fukuda, Y.; Hayakawa, T.; Ichihara, E.; Inoue, K.; Ishihara, K.; Ishino, H.; Itow, Y.; Kajita, T.; Kameda, J.; Kasuga, S.; et al. Evidence for Oscillation of Atmospheric Neutrinos. Phys. Rev. Lett. 1998, 81, 1562–1567. [Google Scholar] [CrossRef]
- Ahmad, Q.R.; Allen, R.C.; Andersen, T.C.; Anglin, J.D.; Barton, J.C.; Beier, E.W.; Bercovitch, M.; Bigu, J.; Biller, S.D.; Black, R.A.; et al. Direct Evidence for Neutrino Flavor Transformation from Neutral-Current Interactions in the Sudbury Neutrino Observatory. Phys. Rev. Lett. 2002, 89, 011301. [Google Scholar] [CrossRef] [PubMed]
- Bethe, H.; Peierls, R. The “Neutrino”. Nature 1934, 133, 532. [Google Scholar] [CrossRef]
- Ahn, J.K.; Chebotaryov, S.; Choi, J.H.; Choi, S.; Choi, W.; Choi, Y.; Jang, H.I.; Jang, J.S.; Jeon, E.J.; Jeong, I.S.; et al. Observation of Reactor Electron Antineutrinos Disappearance in the RENO Experiment. Phys. Rev. Lett. 2012, 108, 191802. [Google Scholar] [CrossRef]
- An, F.P.; Bai, J.Z.; Balantekin, A.B.; Band, H.R.; Beavis, D.; Beriguete, W.; Bishai, M.; Blyth, S.; Boddy, K.; Brown, R.L.; et al. Observation of Electron-Antineutrino Disappearance at Daya Bay. Phys. Rev. Lett. 2012, 108, 171803. [Google Scholar] [CrossRef]
- Abe, Y.; Aberle, C.; Akiri, T.; Dos Anjos, J.C.; Ardellier, F.; Barbosa, A.F.; Baxter, A.; Bergevin, M.; Bernstein, A.; Bezerra, T.J.C.; et al. Indication of Reactor ν¯e Disappearance in the Double Chooz Experiment. Phys. Rev. Lett. 2012, 108, 131801. [Google Scholar] [CrossRef]
- Lightfoot, P.K.; Kudryavtsev, V.A.; Spooner, N.J.C.; Liubarsky, I.; Luscher, R.; Smith, N.J.T. Development of a Gadolinium-Loaded Liquid Scintillator for Solar Neutrino Detection and Neutron Measurements. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2004, 522, 439–446. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, Z.; Liu, J.; Wang, Z.; Zhou, P.; Zhao, Y. A New Gadolinium-Loaded Liquid Scintillator for Reactor Neutrino Detection. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2008, 584, 238–243. [Google Scholar] [CrossRef]
- Park, K.S.; Park, J.S.; Kim, B.C.; Shin, J.W.; Ahn, J.K.; Choi, S.; Choi, Y.; Jang, H.I.; Jang, J.S.; Jeon, E.J.; et al. Construction and Properties of Acrylic Vessels in the RENO Detector. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2012, 686, 91–99. [Google Scholar] [CrossRef]
- Suekane, F.; Iwamoto, T.; Ogawa, H.; Tajima, O.; Watanabe, H. An Overview of the KamLAND 1-Kiloton Liquid Scintillator. arXiv 2004. [Google Scholar] [CrossRef]
- Borexino Collaboration. Phenylxylylethane (PXE): A High-Density, High-Flashpoint Organic Liquid Scintillator for Applications in Low-Energy Particle and Astrophysics Experiments. arXiv 2004. [CrossRef]
- Andriamirado, M.; Balantekin, A.B.; Band, H.R.; Bass, C.D.; Bergeron, D.E.; Berish, D.; Bowden, N.S.; Brodsky, J.P.; Bryan, C.D.; Classen, T.; et al. Improved Short-Baseline Neutrino Oscillation Search and Energy Spectrum Measurement with the PROSPECT Experiment at HFIR. Phys. Rev. D 2021, 103, 032001. [Google Scholar] [CrossRef]
- Serebrov, A.P.; Samoilov, R.M.; Ivochkin, V.G.; Fomin, A.K.; Zinoviev, V.G.; Neustroev, P.V.; Golovtsov, V.L.; Volkov, S.S.; Chernyj, A.V.; Zherebtsov, O.M.; et al. Search for Sterile Neutrinos with the Neutrino-4 Experiment and Measurement Results. Phys. Rev. D 2021, 104, 032003. [Google Scholar] [CrossRef]
- Mei, D.-M.; Hime, A. Muon-Induced Background Study for Underground Laboratories. Phys. Rev. D 2006, 73, 053004. [Google Scholar] [CrossRef]
- Klein, H.; Brooks, F.D. Scintillation Detectors for Fast Neutrons. In Proceedings of the International Workshop on Fast Neutron Detectors and Applications—PoS(FNDA2006), Cape Town, South Africa, 3–6 April 2006; Sissa Medialab: Cape Town, South Africa, 2007; p. 097. [Google Scholar] [CrossRef]
- Ko, Y.J.; Jang, C.H.; Siyeon, K.; Kim, J.Y.; Kim, H.S.; Seo, K.M.; Han, B.Y.; Sun, G.M.; Jeon, E.J.; Lee, J.; et al. Comparison of Fast Neutron Rates for the NEOS Experiment. J. Korean Phys. Soc. 2016, 69, 1651–1655. [Google Scholar] [CrossRef]
- Ashenfelter, J.; Balantekin, A.B.; Band, H.R.; Bass, C.D.; Bergeron, D.E.; Berish, D.; Bignell, L.J.; Bowden, N.S.; Brodsky, J.P.; Bryan, C.D.; et al. Lithium-Loaded Liquid Scintillator Production for the PROSPECT Experiment. J. Instrum. 2019, 14, P03026. [Google Scholar] [CrossRef]
- Hamamatsu Photonics K.K. Photomultiplier Tubes: Basics and Applications, 4th ed.; Hamamatsu Photonics K.K.: Shizuoka, Japan, 2017; pp. 220–222. [Google Scholar]
- Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; et al. Calibration and Characterization of the IceCube Photomultiplier Tube. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2010, 618, 139–152. [Google Scholar] [CrossRef]
- Bauer, C.; Borger, E.; Hofacker, R.; Jänner, K.; Kaether, F.; Langbrandtner, C.; Lindner, M.; Lucht, S.; Reissfelder, M.; Schönert, S.; et al. Qualification Tests of 474 Photomultiplier Tubes for the Inner Detector of the Double Chooz Experiment. J. Instrum. 2011, 6, P06008. [Google Scholar] [CrossRef]
- Belver, D.; Calvo, E.; Cuesta, C.; Gallego-Ros, A.; Gil-Botella, I.; Jiménez, S.; Lastoria, C.; Lux, T.; Palomares, C.; Redondo, D.; et al. Cryogenic R5912-20Mod Photomultiplier Tube Characterization for the ProtoDUNE Dual Phase Detector. J. Instrum. 2018, 13, T10006. [Google Scholar] [CrossRef]
- The NEOS II Collaboration; Jeong, Y.; Han, B.Y.; Jeon, E.J.; Jo, H.S.; Kim, D.K.; Kim, J.Y.; Kim, J.G.; Kim, Y.D.; Ko, Y.J.; et al. Pulse-Shape Discrimination of Fast Neutron Background Using Convolutional Neural Network for NEOS II. J. Korean Phys. Soc. 2020, 77, 1118–1124. [Google Scholar] [CrossRef]
- Cheng, J.; Luo, X.-J.; Li, G.-S.; Li, Y.-F.; Li, Z.-P.; Lu, H.-Q.; Wen, L.-J.; Wurm, M.; Zhang, Y.-Y. Pulse Shape Discrimination Technique for Diffuse Supernova Neutrino Background Search with JUNO. Eur. Phys. J. C 2024, 84, 482. [Google Scholar] [CrossRef]
- Choi, J.Y.; Joo, K.K. Feasibility Study of Concentration Classification Based on Statistical Learning Using Image Data of Different Concentrations of Fluorescent Solutes in a Liquid Scintillator. J. Korean Phys. Soc. 2023, 83, 921–931. [Google Scholar] [CrossRef]
- Weller, P.; Thompson, A.; Summers, R. Using Artificial Neural Networks to Model Non-Linearity in a Complex System; Springer: Vienna, Austria, 1998; pp. 58–61. ISBN 978-3-211-83087-1. [Google Scholar]
- Živković, Ž.; Mihajlović, I.; Nikolić, Đ. Artificial Neural Network Method Applied on the Nonlinear Multivariate Problems. Serbian J. Manag. 2009, 4, 137–282. [Google Scholar]
- Gokhale, S.S.; Rosero, R.; Diaz Perez, R.; Camilo Reyes, C.; Hans, S.; Yeh, M. A Spectrometric Approach to Measuring the Rayleigh Scattering Length for Liquid Scintillator Detectors. J. Instrum. 2021, 16, P03009. [Google Scholar] [CrossRef]
- Laplace, T.A.; Goldblum, B.L.; Bevins, J.E.; Bleuel, D.L.; Bourret, E.; Brown, J.A.; Callaghan, E.J.; Carlson, J.S.; Feng, P.L.; Gabella, G.; et al. Comparative Scintillation Performance of EJ-309, EJ-276, and a Novel Organic Glass. J. Instrum. 2020, 15, P11020. [Google Scholar] [CrossRef]
- NEUTRON/GAMMA PSD EJ-301, EJ-309. Available online: https://eljentechnology.com/products/liquid-scintillators/ej-301-ej-309 (accessed on 15 December 2024).
- Bonesini, M.; Bertoni, R.; De Bari, A.; Rossella, M. Behaviour in Magnetic Fields of Fast Conventional and Fine-Mesh Photomultipliers. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2012, 693, 130–137. [Google Scholar] [CrossRef]
- Phan, V.C.; Nguyen, D.H.; Nguyen, X.H.; Nguyen, N.A.; Pham, D.K.; Dinh, T.H. Digital Method Comparision for Discrimination of Neutrons and Gamma-Rays with Scintillation Detector. Nucl. Sci. Technol. 2016, 6, 32–39. [Google Scholar] [CrossRef]
- Kim, B.R.; Han, B.Y.; Jeon, E.J.; Joo, K.K.; Kang, J.; Khan, N.; Kim, H.J.; Kim, H.; Kim, J.Y.; Siyeon, K.; et al. Pulse Shape Discrimination Capability of Metal-Loaded Organic Liquid Scintillators for a Short-Baseline Reactor Neutrino Experiment. Phys. Scr. 2015, 90, 055302. [Google Scholar] [CrossRef]
- Elisei, F.; Gatti, F.; Goretti, A.; Hagner, T.; Masetti, F.; Mazzucato, U.; Ranucci, G.; Schoenert, S.; Testera, G.; Ullucci, P.; et al. Measurements of Liquid Scintillator Properties for the Borexino Detector. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 1997, 400, 53–68. [Google Scholar] [CrossRef]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv 2019, arXiv:1912.01703. [Google Scholar]
- Clevert, D.-A.; Unterthiner, T.; Hochreiter, S. Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs). arXiv 2015. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014. [Google Scholar] [CrossRef]
- Bridle, J. Training Stochastic Model Recognition Algorithms as Networks Can Lead to Maximum Mutual Information Estimation of Parameters. In Advances in Neural Information Processing Systems 2 (NIPS 1989); Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1989; pp. 211–217. [Google Scholar]
- Hino, Y.; Ajimura, S.; Cheoun, M.K.; Choi, J.H.; Dodo, T.; Furuta, H.; Goh, J.; Haga, K.; Harada, M.; Hasegawa, S.; et al. Characterization of the Correlated Background for a Sterile Neutrino Search Using the First Dataset of the JSNS2 Experiment. Eur. Phys. J. C 2022, 82, 331. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, J.; Koh, B.; Yoon, Y.S.; Ha, C.H. Pulse Shape Discrimination in an Organic Scintillation Phoswich Detector Using Machine Learning Techniques. Front. Phys. 2024, 12, 1361608. [Google Scholar] [CrossRef]
- Gelfusa, M.; Rossi, R.; Lungaroni, M.; Belli, F.; Spolladore, L.; Wyss, I.; Gaudio, P.; Murari, A. Advanced Pulse Shape Discrimination via Machine Learning for Applications in Thermonuclear Fusion. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2020, 974, 164198. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, E.; Choi, J.Y.; Kim, S.Y.; Joo, K.K. Pulse Shape Discrimination of n/γ in Liquid Scintillator at PMT Nonlinear Region Using Artificial Neural Network Technique. Sensors 2024, 24, 8060. https://doi.org/10.3390/s24248060
Yun E, Choi JY, Kim SY, Joo KK. Pulse Shape Discrimination of n/γ in Liquid Scintillator at PMT Nonlinear Region Using Artificial Neural Network Technique. Sensors. 2024; 24(24):8060. https://doi.org/10.3390/s24248060
Chicago/Turabian StyleYun, Eungyu, Ji Young Choi, Sang Yong Kim, and Kyung Kwang Joo. 2024. "Pulse Shape Discrimination of n/γ in Liquid Scintillator at PMT Nonlinear Region Using Artificial Neural Network Technique" Sensors 24, no. 24: 8060. https://doi.org/10.3390/s24248060
APA StyleYun, E., Choi, J. Y., Kim, S. Y., & Joo, K. K. (2024). Pulse Shape Discrimination of n/γ in Liquid Scintillator at PMT Nonlinear Region Using Artificial Neural Network Technique. Sensors, 24(24), 8060. https://doi.org/10.3390/s24248060