Plug-and-Play PRNU Enhancement Algorithm with Guided Filtering
Abstract
:1. Introduction
- We conduct a comprehensive frequency-by-frequency analysis of PRNU to identify its primary frequency range, offering new insights into the spectral characteristics of PRNU and its vulnerability to low-frequency interference;
- We propose a novel guided-filtering PRNU enhancement algorithm that effectively reconstructs and eliminates low-frequency interference, enhancing the high-frequency PRNU components. This algorithm can be seamlessly integrated with existing mainstream enhancement techniques as a plug-and-play module, ensuring improved PRNU performance with low computational complexity.
2. Related Work
2.1. Hardware Fingerprint
2.2. Source Camera Identification
3. Materials and Methods
3.1. PRNU Extraction Module
3.1.1. Noise Extraction Stage
3.1.2. Combination Stage
3.1.3. Enhancement Stage
3.2. Guided-Filter High-Frequency Effective Component Enhancement Module
3.2.1. High-Frequency Enhancement Principle Based on Guided Filtering
3.2.2. PRNU High-Frequency Effective Component Enhancement
- Step 1 Low-frequency interference component reconstruction
- Step 2 Low-frequency interference component filtering
- Step 3 High-frequency effective component enhancement
3.3. Similarity Calculation Module
4. Experiment and Discussion
4.1. Experimental Environment and Data Preparation
4.2. Evaluation Metrics
4.2.1. AUC and TPR@FPR10−3
4.2.2. Kappa Statistic
4.3. PRNU Frequency Band Analysis Experiment
4.3.1. Visualization Analysis
4.3.2. Experimental Analysis
4.4. PRNU Enhancement Experiment
4.4.1. Non-JPEG Compression Scene Enhancement Experiments
4.4.2. JPEG Compression Scene Enhancement Experiments
4.4.3. The Effect of Image Texture Complexity Analysis Experiment
4.4.4. Algorithm Hyper-Parameter Analysis Experiment
4.5. Running Time Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Resolution | Enhancement Scheme | AUC | TPR@FPR10−3 | Kappa |
---|---|---|---|---|
128 × 128 | Baseline | 0.7395 | 0.0031 | 0.3036 |
RSC | 0.8743 | 0.2540 | 0.4583 | |
RSC + HF | 0.8582 | 0.2096 | 0.4028 | |
RSC + Ours | 0.8763 | 0.2558 | 0.4662 | |
SEA | 0.8682 | 0.2667 | 0.4691 | |
SEA + HF | 0.8472 | 0.2513 | 0.4101 | |
SEA + Ours | 0.8683 | 0.2741 | 0.4702 | |
DC | 0.8788 | 0.2336 | 0.4735 | |
DC + HF | 0.8680 | 0.2042 | 0.4139 | |
DC + Ours | 0.8816 | 0.2394 | 0.4738 | |
256 × 256 | Baseline | 0.7208 | 0.0039 | 0.3891 |
RSC | 0.9249 | 0.2704 | 0.6557 | |
RSC + HF | 0.9170 | 0.2167 | 0.5983 | |
RSC + Ours | 0.9275 | 0.2714 | 0.6639 | |
SEA | 0.9268 | 0.3547 | 0.6748 | |
SEA + HF | 0.9142 | 0.3020 | 0.6217 | |
SEA + Ours | 0.9274 | 0.3514 | 0.6799 | |
DC | 0.9296 | 0.2749 | 0.6666 | |
DC + HF | 0.9266 | 0.2242 | 0.6197 | |
DC + Ours | 0.9327 | 0.2778 | 0.6739 | |
512 × 512 | Baseline | 0.6960 | 0.0046 | 0.4237 |
RSC | 0.9563 | 0.3372 | 0.8081 | |
RSC + HF | 0.9512 | 0.2614 | 0.7691 | |
RSC + Ours | 0.9576 | 0.3361 | 0.8137 | |
SEA | 0.9587 | 0.4118 | 0.8245 | |
SEA + HF | 0.9538 | 0.3304 | 0.7947 | |
SEA + Ours | 0.9588 | 0.4112 | 0.8278 | |
DC | 0.9570 | 0.3242 | 0.7879 | |
DC + HF | 0.9586 | 0.2439 | 0.7655 | |
DC + Ours | 0.9611 | 0.3279 | 0.8072 |
Quality Factor | Enhancement Scheme | AUC | TPR@FPR10−3 | Kappa |
---|---|---|---|---|
90 | Baseline | 0.7435 | 0.0036 | 0.2863 |
RSC | 0.8672 | 0.2398 | 0.4393 | |
RSC + HF | 0.8476 | 0.1996 | 0.3819 | |
RSC + Ours | 0.8686 | 0.2500 | 0.4462 | |
SEA | 0.8632 | 0.2590 | 0.4502 | |
SEA + HF | 0.8402 | 0.2272 | 0.3864 | |
SEA + Ours | 0.8629 | 0.2591 | 0.4524 | |
DC | 0.8739 | 0.2078 | 0.4531 | |
DC + HF | 0.8610 | 0.1797 | 0.3924 | |
DC + Ours | 0.8762 | 0.2124 | 0.4536 | |
80 | Baseline | 0.7079 | 0.0028 | 0.2761 |
RSC | 0.8444 | 0.2414 | 0.3880 | |
RSC + HF | 0.8192 | 0.1957 | 0.3147 | |
RSC + Ours | 0.8459 | 0.2457 | 0.3948 | |
SEA | 0.8449 | 0.2622 | 0.4088 | |
SEA + HF | 0.8155 | 0.2314 | 0.3310 | |
SEA + Ours | 0.8446 | 0.2691 | 0.4099 | |
DC | 0.8540 | 0.2616 | 0.4216 | |
DC + HF | 0.8357 | 0.2081 | 0.3383 | |
DC + Ours | 0.8564 | 0.2632 | 0.4215 | |
70 | Baseline | 0.6746 | 0.0022 | 0.2449 |
RSC | 0.8246 | 0.1939 | 0.3384 | |
RSC + HF | 0.7930 | 0.1431 | 0.2582 | |
RSC + Ours | 0.8272 | 0.1967 | 0.3409 | |
SEA | 0.8318 | 0.2257 | 0.3694 | |
SEA + HF | 0.7980 | 0.1869 | 0.2800 | |
SEA + Ours | 0.8321 | 0.2256 | 0.3704 | |
DC | 0.8369 | 0.2327 | 0.3740 | |
DC + HF | 0.8112 | 0.1724 | 0.2835 | |
DC + Ours | 0.8399 | 0.2314 | 0.3758 | |
60 | Baseline | 0.6461 | 0.0011 | 0.2148 |
RSC | 0.8022 | 0.1524 | 0.2819 | |
RSC + HF | 0.7628 | 0.1002 | 0.2078 | |
RSC + Ours | 0.8041 | 0.1532 | 0.2862 | |
SEA | 0.8133 | 0.1654 | 0.3161 | |
SEA + HF | 0.7705 | 0.1409 | 0.2291 | |
SEA + Ours | 0.8136 | 0.1650 | 0.3191 | |
DC | 0.8178 | 0.1982 | 0.3204 | |
DC + HF | 0.7796 | 0.1290 | 0.2278 | |
DC + Ours | 0.8200 | 0.1982 | 0.3198 |
References
- Bencherqui, A.; Amine Tahiri, M.; Karmouni, H.; Alfidi, M.; Motahhir, S.; Abouhawwash, M.; Askar, S.S.; Wen, S.; Qjidaa, H.; Sayyouri, M. Optimal algorithm for color medical encryption and compression images based on DNA coding and a hyperchaotic system in the moments. Eng. Sci. Technol. Int. J. 2024, 50, 101612. [Google Scholar] [CrossRef]
- Lukas, J.; Fridrich, J.; Goljan, M. Digital camera identification from sensor pattern noise. IEEE Trans. Inf. Forensics Secur. 2006, 1, 205–214. [Google Scholar] [CrossRef]
- Korus, P.; Memon, N. Computational sensor fingerprints. IEEE Trans. Inf. Forensics Secur. 2022, 17, 2508–2523. [Google Scholar] [CrossRef]
- Chen, M.; Fridrich, J.; Goljan, M.; Lukás, J. Determining image origin and integrity using sensor noise. IEEE Trans. Inf. Forensics Secur. 2008, 3, 74–90. [Google Scholar] [CrossRef]
- Mohanty, M.; Zhang, M.; Asghar, M.R.; Russello, G. e-PRNU: Encrypted Domain PRNU-Based Camera Attribution for Preserving Privacy. IEEE Trans. Dependable Secur. Comput. 2021, 18, 426–437. [Google Scholar] [CrossRef]
- Liu, L.; Fu, X.; Chen, X.; Wang, J.; Ba, Z.; Lin, F.; Lu, L.; Ren, K. Fits: Matching camera fingerprints subject to software noise pollution. In Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security, Copenhagen, Denmark, 26–30 November 2023; pp. 1660–1674. [Google Scholar] [CrossRef]
- Manisha; Li, C.-T.; Lin, X.; Kotegar, K.A. Beyond PRNU: Learning Robust Device-Specific Fingerprint for Source Camera Identification. Sensors 2022, 22, 7871. [Google Scholar] [CrossRef]
- Chierchia, G.; Parrilli, S.; Poggi, G.; Sansone, C.; Verdoliva, L. On the influence of denoising in prnu based forgery detection. In Proceedings of the 2nd ACM Workshop on Multimedia in Forensics, Security and Intelligence, Firenze, Italy, 29 October 2010; pp. 117–122. [Google Scholar]
- Cortiana, A.; Conotter, V.; Boato, G.; De Natale, F.G. Performance Comparison of Denoising Filters for Source Camera Identification. In Media Watermarking, Security, and Forensics III; SPIE: Bellingham, WA, USA, 2011; pp. 60–65. [Google Scholar] [CrossRef]
- Zeng, H.; Kang, X. Fast source camera identification using content adaptive guided image filter. J. Forensic Sci. 2016, 61, 520–526. [Google Scholar] [CrossRef]
- Zeng, H.; Wan, Y.; Deng, K.; Peng, A. Source camera identification with dual-tree complex wavelet transform. IEEE Access 2020, 8, 18874–18883. [Google Scholar] [CrossRef]
- Xiao, Y.; Tian, H.; Cao, G.; Yang, D.; Li, H. Effective PRNU extraction via densely connected hierarchical network. Multimed. Tools Appl. 2022, 81, 20443–20463. [Google Scholar] [CrossRef]
- Montibeller, A.; Pérez-González, F. An adaptive method for camera attribution under complex radial distortion corrections. IEEE Trans. Inf. Forensics Secur. 2023, 19, 385–400. [Google Scholar] [CrossRef]
- Fernández-Menduiña, S.; Pérez-González, F. On the information leakage quantification of camera fingerprint estimates. EURASIP J. Inf. Secur. 2021, 2021, 6. [Google Scholar] [CrossRef]
- Gupta, B.; Tiwari, M. Improving performance of source-camera identification by suppressing peaks and eliminating low-frequency defects of reference SPN. IEEE Signal Process. Lett. 2018, 25, 1340–1343. [Google Scholar] [CrossRef]
- Lin, X.; Li, C.-T. Preprocessing reference sensor pattern noise via spectrum equalization. IEEE Trans. Inf. Forensics Secur. 2016, 11, 126–140. [Google Scholar] [CrossRef]
- Rao, Q.; Wang, J. Suppressing random artifacts in reference sensor pattern noise via decorrelation. IEEE Signal Process. Lett. 2017, 24, 809–813. [Google Scholar] [CrossRef]
- Baldini, G.; Steri, G. A survey of techniques for the identification of mobile phones using the physical fingerprints of the built-in components. IEEE Commun. Surv. Tutor. 2017, 19, 1761–1789. [Google Scholar] [CrossRef]
- Suski II, W.C.; Temple, M.A.; Mendenhall, M.J.; Mills, R.F. Radio frequency fingerprinting commercial communication devices to enhance electronic security. Int. J. Electron. Secur. Digit. Forensics 2008, 1, 301–322. [Google Scholar] [CrossRef]
- Brik, V.; Banerjee, S.; Gruteser, M.; Oh, S. Wireless device identification with radiometric signatures. In Proceedings of the 14th ACM International Conference on Mobile Computing and Networking, San Francisco, CA, USA, 14–19 September 2008; pp. 116–127. [Google Scholar] [CrossRef]
- Bo, C.; Zhang, L.; Li, X.-Y.; Huang, Q.; Wang, Y. Silentsense: Silent user identification via touch and movement behavioral biometrics. In Proceedings of the 19th Annual International Conference on Mobile Computing & Networking, Miami, FL, USA, 30 September–4 October 2013; pp. 187–190. [Google Scholar] [CrossRef]
- Bojinov, H.; Michalevsky, Y.; Nakibly, G.; Boneh, D. Mobile device identification via sensor fingerprinting. arXiv 2014, arXiv:1408.1416. [Google Scholar]
- Lai, Y.; Qi, Y.; He, Y.; Mu, N. A survey of research on smartphone fingerprinting identification techniques. J. Inf. Secur. Res. 2019, 5, 865–878. [Google Scholar] [CrossRef]
- San Choi, K.; Lam, E.Y.; Wong, K.K. Automatic source camera identification using the intrinsic lens radial distortion. Opt. Express 2006, 14, 11551–11565. [Google Scholar] [CrossRef]
- San Choi, K.; Lam, E.Y.; Wong, K.K. Source camera identification by JPEG compression statistics for image forensics. In Proceedings of the TENCON 2006—2006 IEEE Region 10 Conference, Hong Kong, China, 14–17 November 2006; pp. 1–4. [Google Scholar] [CrossRef]
- Deng, Z.; Gijsenij, A.; Zhang, J. Source camera identification using auto-white balance approximation. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 57–64. [Google Scholar] [CrossRef]
- Long, Y.; Huang, Y. Image based source camera identification using demosaicking. In Proceedings of the 2006 IEEE Workshop on Multimedia Signal Processing, Victoria, BC, Canada, 3–6 October 2006; pp. 419–424. [Google Scholar] [CrossRef]
- Bayram, S.; Sencar, H.T.; Memon, N. Classification of digital camera-models based on demosaicing artifacts. Digit. Investig. 2008, 5, 49–59. [Google Scholar] [CrossRef]
- Chen, C.; Stamm, M.C. Camera model identification framework using an ensemble of demosaicing features. In Proceedings of the 2015 IEEE International Workshop on Information Forensics and Security (WIFS), Rome, Italy, 16–19 November 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Van, L.T.; Emmanuel, S.; Kankanhalli, M.S. Identifying source cell phone using chromatic aberration. In Proceedings of the 2007 IEEE International Conference on Multimedia and Expo, Beijing, China, 2–5 July 2007; pp. 883–886. [Google Scholar] [CrossRef]
- Jiang, X.; Wei, S.; Zhao, R.; Zhao, Y.; Du, X.; Du, G. Survey of imaging device source identification. J. Beijing Jiaotong Univ. 2019, 43, 48–57. [Google Scholar] [CrossRef]
- Avcibas, I.; Sankur, B.; Sayood, K. Statistical evaluation of image quality measures. J. Electron. Imaging 2001, 1, 206–223. [Google Scholar] [CrossRef]
- Holub, V.; Fridrich, J. Low-complexity features for JPEG steganalysis using undecimated DCT. IEEE Trans. Inf. Forensics Secur. 2014, 10, 219–228. [Google Scholar] [CrossRef]
- Martín-Rodríguez, F.; Isasi-de-Vicente, F.; Fernández-Barciela, M. A Stress Test for Robustness of Photo Response Nonuniformity (Camera Sensor Fingerprint) Identification on Smartphones. Sensors 2023, 23, 3462. [Google Scholar] [CrossRef]
- Shaya, O.A.; Yang, P.; Ni, R.; Zhao, Y.; Piva, A. A New Dataset for Source Identification of High Dynamic Range Images. Sensors 2018, 18, 3801. [Google Scholar] [CrossRef]
- Geradts, Z.J.; Bijhold, J.; Kieft, M.; Kurosawa, K.; Kuroki, K.; Saitoh, N. Methods for identification of images acquired with digital cameras. In Enabling Technologies for Law Enforcement and Security; SPIE: Bellingham, WA, USA, 2001; pp. 505–512. [Google Scholar] [CrossRef]
- Kurosawa, K.; Kuroki, K.; Saitoh, N. CCD fingerprint method-identification of a video camera from videotaped images. In Proceedings of the 1999 International Conference on Image Processing (Cat. 99CH36348), Kobe, Japan, 24–28 October 1999; pp. 537–540. [Google Scholar] [CrossRef]
- Dirik, A.E.; Sencar, H.T.; Memon, N. Digital single lens reflex camera identification from traces of sensor dust. IEEE Trans. Inf. Forensics Secur. 2008, 3, 539–552. [Google Scholar] [CrossRef]
- Yang, P.; Ni, R.; Zhao, Y.; Zhao, W. Source camera identification based on content-adaptive fusion residual networks. Pattern Recognit. Lett. 2019, 119, 195–204. [Google Scholar] [CrossRef]
- You, C.; Zheng, H.; Guo, Z.; Wang, T.; Wu, X. Multiscale content-independent feature fusion network for source camera identification. Appl. Sci. 2021, 11, 6752. [Google Scholar] [CrossRef]
- Chen, M.; Fridrich, J.; Goljan, M.; Lukáš, J. Source digital camcorder identification using sensor photo response non-uniformity. In Security, Steganography, and Watermarking of Multimedia Contents IX; SPIE: Bellingham, WA, USA, 2007; pp. 517–528. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Tang, X. Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 1397–1409. [Google Scholar] [CrossRef] [PubMed]
- Goljan, M.; Fridrich, J. Camera identification from cropped and scaled images. In Security, Forensics, Steganography, and Watermarking of Multimedia Contents X; SPIE: Bellingham, WA, USA, 2008; pp. 154–166. [Google Scholar] [CrossRef]
- Goljan, M. Digital camera identification from images–estimating false acceptance probability. In International Workshop on Digital Watermarking; Springer: Berlin/Heidelberg, Germany, 2008; pp. 454–468. [Google Scholar] [CrossRef]
- Gloe, T.; Böhme, R. The ‘Dresden Image Database’ for benchmarking digital image forensics. In Proceedings of the 2010 ACM Symposium on Applied Computing, Sierre, Switzerland, 22–26 March 2010; pp. 1584–1590. [Google Scholar] [CrossRef]
- Tian, H.; Xiao, Y.; Cao, G.; Zhang, Y.; Xu, Z.; Zhao, Y. Daxing smartphone identification dataset. IEEE Access 2019, 7, 101046–101053. [Google Scholar] [CrossRef]
- Bertini, F.; Sharma, R.; Montesi, D. Are social networks watermarking us or are we (unawarely) watermarking ourself? J. Imaging 2022, 8, 132. [Google Scholar] [CrossRef]
- Ye, N.; Zeng, Z.; Zhou, J.; Zhu, L.; Duan, Y.; Wu, Y.; Wu, J.; Zeng, H.; Gu, Q.; Wang, X.; et al. OoD-Control: Generalizing Control in Unseen Environments. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 46, 7421–7433. [Google Scholar] [CrossRef]
Resolution | Enhancement Scheme | AUC | TPR@FPR10−3 | Kappa |
---|---|---|---|---|
128 × 128 | Baseline | 0.7530 | 0.0011 | 0.3389 |
RSC | 0.8626 | 0.2555 | 0.4405 | |
RSC + HF | 0.8324 | 0.1958 | 0.3617 | |
RSC + Ours | 0.8633 | 0.2586 | 0.4449 | |
SEA | 0.8570 | 0.2715 | 0.4280 | |
SEA + HF | 0.8216 | 0.2219 | 0.3437 | |
SEA + Ours | 0.8570 | 0.2727 | 0.4319 | |
DC | 0.8710 | 0.2964 | 0.4645 | |
DC + HF | 0.8420 | 0.2153 | 0.3786 | |
DC + Ours | 0.8728 | 0.2928 | 0.4684 | |
256 × 256 | Baseline | 0.7423 | 0.0011 | 0.4337 |
RSC | 0.9234 | 0.4520 | 0.6671 | |
RSC + HF | 0.9024 | 0.3800 | 0.5912 | |
RSC + Ours | 0.9250 | 0.4546 | 0.6704 | |
SEA | 0.9233 | 0.5034 | 0.6556 | |
SEA + HF | 0.8984 | 0.4459 | 0.5725 | |
SEA + Ours | 0.9234 | 0.5011 | 0.6611 | |
DC | 0.9279 | 0.4849 | 0.6823 | |
DC + HF | 0.9071 | 0.3942 | 0.5973 | |
DC + Ours | 0.9307 | 0.4911 | 0.6868 | |
512 × 512 | Baseline | 0.7083 | 0.0014 | 0.4760 |
RSC | 0.9631 | 0.6518 | 0.8299 | |
RSC + HF | 0.9489 | 0.5941 | 0.7658 | |
RSC + Ours | 0.9642 | 0.6576 | 0.8308 | |
SEA | 0.9629 | 0.7115 | 0.8205 | |
SEA + HF | 0.9475 | 0.6692 | 0.7651 | |
SEA + Ours | 0.9640 | 0.7215 | 0.8273 | |
DC | 0.9575 | 0.6362 | 0.8171 | |
DC + HF | 0.9479 | 0.5672 | 0.7559 | |
DC + Ours | 0.9640 | 0.6559 | 0.8356 |
Quality Factor | Enhancement Scheme | AUC | TPR@FPR10−3 | Kappa |
---|---|---|---|---|
90 | Baseline | 0.7464 | 0.0011 | 0.3322 |
RSC | 0.8552 | 0.2499 | 0.4262 | |
RSC + HF | 0.8227 | 0.1858 | 0.3425 | |
RSC + Ours | 0.8560 | 0.2522 | 0.4299 | |
SEA | 0.8529 | 0.2664 | 0.4221 | |
SEA + HF | 0.8158 | 0.2127 | 0.3321 | |
SEA + Ours | 0.8531 | 0.2659 | 0.4232 | |
DC | 0.8648 | 0.2858 | 0.4497 | |
DC + HF | 0.8334 | 0.2084 | 0.3664 | |
DC + Ours | 0.8666 | 0.2878 | 0.4577 | |
80 | Baseline | 0.7306 | 0.0011 | 0.3132 |
RSC | 0.8444 | 0.2295 | 0.4001 | |
RSC + HF | 0.8098 | 0.1704 | 0.3131 | |
RSC + Ours | 0.8453 | 0.2318 | 0.4026 | |
SEA | 0.8438 | 0.2424 | 0.3956 | |
SEA + HF | 0.8043 | 0.1886 | 0.3056 | |
SEA + Ours | 0.8439 | 0.2431 | 0.3988 | |
DC | 0.8553 | 0.2724 | 0.4288 | |
DC + HF | 0.8213 | 0.1897 | 0.3359 | |
DC + Ours | 0.8573 | 0.2726 | 0.4326 | |
70 | Baseline | 0.7365 | 0.0011 | 0.3073 |
RSC | 0.8438 | 0.2274 | 0.3892 | |
RSC + HF | 0.8088 | 0.1603 | 0.2995 | |
RSC + Ours | 0.8450 | 0.2296 | 0.3956 | |
SEA | 0.8428 | 0.2404 | 0.3874 | |
SEA + HF | 0.8017 | 0.1774 | 0.2908 | |
SEA + Ours | 0.8428 | 0.2373 | 0.3897 | |
DC | 0.8556 | 0.2696 | 0.4230 | |
DC + HF | 0.8209 | 0.1846 | 0.3256 | |
DC + Ours | 0.8574 | 0.2714 | 0.4277 | |
60 | Baseline | 0.7376 | 0.0009 | 0.3006 |
RSC | 0.8355 | 0.2091 | 0.3669 | |
RSC + HF | 0.7994 | 0.1497 | 0.2818 | |
RSC + Ours | 0.8365 | 0.2112 | 0.3713 | |
SEA | 0.8354 | 0.2278 | 0.3774 | |
SEA + HF | 0.7944 | 0.1623 | 0.2807 | |
SEA + Ours | 0.8356 | 0.2278 | 0.3804 | |
DC | 0.8488 | 0.2566 | 0.4057 | |
DC + HF | 0.8135 | 0.1707 | 0.3113 | |
DC + Ours | 0.8505 | 0.2564 | 0.4113 |
Enhancement Scheme | AUC | TPR@FPR10−3 | Kappa | |||
---|---|---|---|---|---|---|
Baseline | 0.8477 | 0.7996 | 0.2211 | 0.0044 | 0.5681 | 0.4229 |
RSC | 0.9162 | 0.8784 | 0.5544 | 0.3689 | 0.6649 | 0.5899 |
RSC + Ours | 0.9248 | 0.8787 | 0.5613 | 0.5551 | 0.6676 | 0.5942 |
Dataset | Enhancement Scheme | Resolution | ||
---|---|---|---|---|
128 × 128 | 256 × 256 | 512 × 512 | ||
Dresden | RSC | 1.25 | 3.48 | 19.56 |
RSC + HF | 3.58 | 10.19 | 46.89 | |
RSC + Ours | 4.43 | 18.06 | 108.49 | |
SEA | 9.57 | 14.83 | 72.61 | |
SEA + HF | 10.40 | 20.03 | 97.03 | |
SEA + Ours | 11.70 | 28.92 | 132.01 | |
DC | 47.49 | 191.23 | 765.68 | |
DC + HF | 49.11 | 198.77 | 790.65 | |
DC + Ours | 50.53 | 207.36 | 844.11 | |
Daxing | RSC | 1.26 | 3.41 | 19.75 |
RSC + HF | 3.42 | 9.85 | 44.37 | |
RSC + Ours | 4.42 | 17.55 | 108.68 | |
SEA | 8.36 | 14.79 | 72.65 | |
SEA + HF | 10.58 | 19.92 | 95.57 | |
SEA + Ours | 11.23 | 29.14 | 131.78 | |
DC | 47.32 | 192.04 | 765.63 | |
DC + HF | 49.57 | 199.49 | 788.22 | |
DC + Ours | 50.68 | 210.02 | 844.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Xiao, Y.; Tian, H. Plug-and-Play PRNU Enhancement Algorithm with Guided Filtering. Sensors 2024, 24, 7701. https://doi.org/10.3390/s24237701
Liu Y, Xiao Y, Tian H. Plug-and-Play PRNU Enhancement Algorithm with Guided Filtering. Sensors. 2024; 24(23):7701. https://doi.org/10.3390/s24237701
Chicago/Turabian StyleLiu, Yufei, Yanhui Xiao, and Huawei Tian. 2024. "Plug-and-Play PRNU Enhancement Algorithm with Guided Filtering" Sensors 24, no. 23: 7701. https://doi.org/10.3390/s24237701
APA StyleLiu, Y., Xiao, Y., & Tian, H. (2024). Plug-and-Play PRNU Enhancement Algorithm with Guided Filtering. Sensors, 24(23), 7701. https://doi.org/10.3390/s24237701