Challenges and Solutions for Leave-One-Out Biosensor Design in the Context of a Rugged Fitness Landscape
Abstract
:1. Introduction
2. Materials and Methods
2.1. Target Selection
2.2. Computational Protein Library Design
2.3. Library Construction and Plate Screening
2.4. LOO7-HA5:ES1 Expression and Purification
2.5. LOO7-HA5:ES1 Size Exclusion Chromatography
2.6. LOO7-HA5:ES1 Peptide Binding Affinity
2.7. Fluorescence Quantum Yield
2.8. SGMU Fiber Preparation
3. Results
3.1. Library Screens
3.2. LOO7-HA5:ES1 Peptide Binding
3.3. LOO7-HA5:ES1 Photo-Switching and Blue Shift
3.4. Experiments on Fibers
4. Discussion
4.1. Biosensor Library Screening
4.2. LOO-GFP Biosensors on Fibers
4.3. Influenza Biosensor Design
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Accession Codes
- Sortase A. partial (Staphylococcus aureus). GenBank: WP_084935205.1, PDB: 1T2W.
- Maltose binding protein maltose/maltodextrin ABC transporter substrate-binding protein MalE (Escherichia coli). GenBank: EFB2378405.1. PDB: 7MQ7.
- Superfolder green fluorescent protein (sfGFP), precursor to sfGFP-OPT. GenBank: UFQ89826.1. PDB: 2B3P.
- Ultrabithorax (Ubx), isoform F (Drosophila melanogaster). NCBI Reference Sequence: NP_996219.1.
- Hemagglutinin (Influenza A virus (A/Thailand/2(SP-33)/2004[H5N1])). GenBank: AAS65618.1.
- Dengue virus polyprotein (dengue virus type 2), includes cleavage products NS1 (776..1127) and E-protein (281..775). GenBank: WPF60237.1.
- Envelope glycoprotein (human immunodeficiency virus 1). GenBank: AEQ75975.1.
- Ssp dnaE intein (Synechocystis sp.). UniProtKB/Swiss-Prot: P74750.2.
Appendix B
Appendix B.1. Abbreviations
References
- Medema, G.; Heijnen, L.; Elsinga, G.; Italiaander, R.; Brouwer, A. Presence of SARS-Coronavirus-2 RNA in Sewage and Correlation with Reported COVID-19 Prevalence in the Early Stage of the Epidemic in The Netherlands. Environ. Sci. Technol. Lett. 2020, 7, 511–516. [Google Scholar] [CrossRef]
- Minhas, N.; Gurav, Y.K.; Sambhare, S.; Potdar, V.; Choudhary, M.L.; Bhardwaj, S.D.; Abraham, P. Cost-Analysis of Real Time RT-PCR Test Performed for COVID-19 Diagnosis at India’s National Reference Laboratory during the Early Stages of Pandemic Mitigation. PLoS ONE 2023, 18, e0277867. [Google Scholar] [CrossRef]
- Huang, Y.; Bystroff, C. Complementation and Reconstitution of Fluorescence from Circularly Permuted and Truncated Green Fluorescent Protein†. Biochemistry 2009, 48, 929–940. [Google Scholar] [CrossRef]
- Huang, Y.; Banerjee, S.; Crone, D.E.; Schenkelberg, C.D.; Pitman, D.J.; Buck, P.M.; Bystroff, C. Toward Computationally Designed Self-Reporting Biosensors Using Leave-One-Out Green Fluorescent Protein. Biochemistry 2015, 54, 6263–6273. [Google Scholar] [CrossRef]
- Do, K.; Boxer, S.G. Thermodynamics, Kinetics, and Photochemistry of β-Strand Association and Dissociation in a Split-GFP System. J. Am. Chem. Soc. 2011, 133, 18078–18081. [Google Scholar] [CrossRef]
- Ding, Y.; Xu, M.-Q.; Ghosh, I.; Chen, X.; Ferrandon, S.; Lesage, G.; Rao, Z. Crystal Structure of a Mini-Intein Reveals a Conserved Catalytic Module Involved in Side Chain Cyclization of Asparagine during Protein Splicing. J. Biol. Chem. 2003, 278, 39133–39142. [Google Scholar] [CrossRef]
- Pelletier, J.N.; Campbell-Valois, F.-X.; Michnick, S.W. Oligomerization Domain-Directed Reassembly of Active Dihydrofolate Reductase from Rationally Designed Fragments. Proc. Natl. Acad. Sci. USA 1998, 95, 12141–12146. [Google Scholar] [CrossRef]
- Cabantous, S.; Terwilliger, T.C.; Waldo, G.S. Protein Tagging and Detection with Engineered Self-Assembling Fragments of Green Fluorescent Protein. Nat. Biotechnol. 2005, 23, 102–107. [Google Scholar]
- Kent, K.P.; Childs, W.; Boxer, S.G. Deconstructing Green Fluorescent Protein. J. Am. Chem. Soc. 2008, 130, 9664–9665. [Google Scholar] [CrossRef]
- Ozawa, T.; Kaihara, A.; Sato, M.; Tachihara, K.; Umezawa, Y. Split Luciferase as an Optical Probe for Detecting Protein-Protein Interactions in Mammalian Cells Based on Protein Splicing. Anal. Chem. 2001, 73, 2516–2521. [Google Scholar] [CrossRef]
- Ullmann, A.; Jacob, F.; Monod, J. Characterization by in Vitro Complementation of a Peptide Corresponding to an Operator-Proximal Segment of the β-Galactosidase Structural Gene of Escherichia coli. J. Mol. Biol. 1967, 24, 339–343. [Google Scholar] [CrossRef]
- Huang, Y.M.; Nayak, S.; Bystroff, C. Quantitative In Vivo Solubility and Reconstitution of Truncated Circular Permutants of Green Fluorescent Protein. Protein Sci. 2011, 20, 1775–1780. [Google Scholar] [CrossRef]
- Michalopoulos, I.; Torrance, G.M.; Gilbert, D.R.; Westhead, D.R. TOPS: An enhanced database of protein structural topology. Nucleic Acids Res. 2004, 32 (Suppl. S1), D251–D254. [Google Scholar] [CrossRef]
- Howell, D.W.; Tsai, S.-P.; Churion, K.; Patterson, J.; Abbey, C.; Atkinson, J.T.; Porterpan, D.; You, Y.-H.; Meissner, K.E.; Bayless, K.J.; et al. Identification of Multiple Dityrosine Bonds in Materials Composed of the Drosophila Protein Ultrabithorax. Adv. Funct. Mater. 2015, 25, 5988–5998. [Google Scholar] [CrossRef]
- Bondos, S.E. Immobilization and enhancement of a heterodimeric fluorescent biosensor in fibrous protein biomaterials via gene fusion. Biophys. J. 2023, 122, 290a. [Google Scholar] [CrossRef]
- Pitman, D.J.; Schenkelberg, C.D.; Huang, Y.-M.; Teets, F.D.; DiTursi, D.; Bystroff, C. Improving Computational Efficiency and Tractability of Protein Design Using a Piecemeal Approach. A Strategy for Parallel and Distributed Protein Design. Bioinformatics 2014, 30, 1138–1145. [Google Scholar] [CrossRef]
- Goldenzweig, A.; Goldsmith, M.; Hill, S.E.; Gertman, O.; Laurino, P.; Ashani, Y.; Dym, O.; Unger, T.; Albeck, S.; Prilusky, J.; et al. Automated Structure- and Sequence-Based Design of Proteins for High Bacterial Expression and Stability. Mol. Cell 2016, 63, 337–346. [Google Scholar] [CrossRef]
- Missimer, J.H.; Steinmetz, M.O.; Baron, R.; Winkler, F.K.; Kammerer, R.A.; Daura, X.; van Gunsteren, W.F. Configurational Entropy Elucidates the Role of Salt-Bridge Networks in Protein Thermostability. Protein Sci. Publ. Protein Soc. 2007, 16, 1349–1359. [Google Scholar] [CrossRef]
- Karpusas, M.; Baase, W.A.; Matsumura, M.; Matthews, B.W. Hydrophobic Packing in T4 Lysozyme Probed by Cavity-Filling Mutants. Proc. Natl. Acad. Sci. USA 1989, 86, 8237–8241. [Google Scholar] [CrossRef]
- Chen, J.; Stites, W.E. Replacement of Staphylococcal Nuclease Hydrophobic Core Residues with Those from Thermophilic Homologues Indicates Packing Is Improved in Some Thermostable Proteins. J. Mol. Biol. 2004, 344, 271–280. [Google Scholar] [CrossRef]
- Chen, J.; Lu, Z.; Sakon, J.; Stites, W.E. Increasing the Thermostability of Staphylococcal Nuclease: Implications for the Origin of Protein Thermostability. J. Mol. Biol. 2000, 303, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Gerk, L.P.; Leven, O.; Müller-Hill, B. Strengthening the Dimerisation Interface of Lac Repressor Increases Its Thermostability by 40 Deg. C. J. Mol. Biol. 2000, 299, 805–812. [Google Scholar] [CrossRef]
- Munson, M.; Balasubramanian, S.; Fleming, K.G.; Nagi, A.D.; O’Brien, R.; Sturtevant, J.M.; Regan, L. What Makes a Protein a Protein? Hydrophobic Core Designs That Specify Stability and Structural Properties. Protein Sci. Publ. Protein Soc. 1996, 5, 1584–1593. [Google Scholar] [CrossRef] [PubMed]
- Yadahalli, S.; Jayanthi, L.P.; Gosavi, S. A Method for Assessing the Robustness of Protein Structures by Randomizing Packing Interactions. Front. Mol. Biosci. 2022, 9, 849272. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Schenkelberg, C.D.; Jordan, T.B.; Reimertz, J.M.; Crone, E.E.; Crone, D.E.; Bystroff, C. Mispacking and the Fitness Landscape of the Green Fluorescent Protein Chromophore Milieu. Biochemistry 2017, 56, 736–747. [Google Scholar] [CrossRef] [PubMed]
- Dahiyat, B.I.; Mayo, S.L. Probing the Role of Packing Specificity in Protein Design. Proc. Natl. Acad. Sci. USA 1997, 94, 10172–10177. [Google Scholar] [CrossRef]
- Sarkisyan, K.S.; Bolotin, D.A.; Meer, M.V.; Usmanova, D.R.; Mishin, A.S.; Sharonov, G.V.; Ivankov, D.N.; Bozhanova, N.G.; Baranov, M.S.; Soylemez, O.; et al. Local Fitness Landscape of the Green Fluorescent Protein. Nature 2016, 533, 397–401. [Google Scholar] [CrossRef]
- Bairoch, A. PROSITE: A dictionary of sites and patterns in proteins. Nucleic Acids Res. 1991, 19, 2241. [Google Scholar] [CrossRef]
- Desmet, J.; Maeyer, M.D.; Hazes, B.; Lasters, I. The dead-end elimination theorem and its use in protein side-chain positioning. Nature 1992, 356, 539–542. [Google Scholar] [CrossRef]
- Leaver-Fay, A.; Tyka, M.; Lewis, S.M.; Lange, O.F.; Thompson, J.; Jacak, R.; Kaufman, K.; Renfrew, P.D.; Smith, C.A.; Sheffler, W.; et al. ROSETTA3: An Object-Oriented Software Suite for the Simulation and Design of Macromolecules. Methods Enzym. 2011, 487, 545–574. [Google Scholar] [CrossRef]
- O’Meara, M.J.; Leaver-Fay, A.; Tyka, M.D.; Stein, A.; Houlihan, K.; DiMaio, F.; Bradley, P.; Kortemme, T.; Baker, D.; Snoeyink, J.; et al. Combined Covalent-Electrostatic Model of Hydrogen Bonding Improves Structure Prediction with Rosetta. J. Chem. Theory Comput. 2015, 11, 609–622. [Google Scholar] [CrossRef] [PubMed]
- Schenkelberg, C.D. Novel Computational Methods for Modeling Backbone Flexibility and Improving Side-Chain Prediction for Protein Design Applications; Rensselaer Polytechnic Institute: Troy, NY, USA, 2016. [Google Scholar]
- Smith, C.A.; Kortemme, T. Backrub-like Backbone Simulation Recapitulates Natural Protein Conformational Variability and Improves Mutant Side-Chain Prediction. J. Mol. Biol. 2008, 380, 742–756. [Google Scholar] [CrossRef] [PubMed]
- Schenkelberg, C.D.; Bystroff, C. Protein Backbone Ensemble Generation Explores the Local Structural Space of Unseen Natural Homologs. Bioinformatics 2016, 32, 1454–1461. [Google Scholar] [CrossRef] [PubMed]
- Shapovalov, M.V.; Dunbrack, R.L. A Smoothed Backbone-Dependent Rotamer Library for Proteins Derived from Adaptive Kernel Density Estimates and Regressions. Structure 2011, 19, 844–858. [Google Scholar] [CrossRef] [PubMed]
- Mandell, D.J.; Kortemme, T. Backbone Flexibility in Computational Protein Design. Curr. Opin. Biotechnol. 2009, 20, 420–428. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.-S.; Ban, Y.-E.A.; Richter, F.; Andre, I.; Vernon, R.; Schief, W.R.; Baker, D. RosettaRemodel: A Generalized Framework for Flexible Backbone Protein Design. PLoS ONE 2011, 6, e24109. [Google Scholar] [CrossRef]
- Humphris, E.L.; Kortemme, T. Prediction of Protein-Protein Interface Sequence Diversity Using Flexible Backbone Computational Protein Design. Structure 2008, 16, 1777–1788. [Google Scholar] [CrossRef]
- Zhang, L.; Hermans, J. Hydrophilicity of cavities in proteins. Proteins Struct. Funct. Bioinform. 1996, 24, 433–438. [Google Scholar] [CrossRef]
- Hoover, D.M. DNAWorks: An Automated Method for Designing Oligonucleotides for PCR-Based Gene Synthesis. Nucleic Acids Res. 2002, 30, e43. [Google Scholar] [CrossRef]
- Stemmer, W.P.; Crameri, A.; Ha, K.D.; Brennan, T.M.; Heyneker, H.L. Single-Step Assembly of a Gene and Entire Plasmid from Large Numbers of Oligodeoxyribonucleotides. Gene 1995, 164, 49–53. [Google Scholar] [CrossRef]
- Sun, Z.; Chen, J.; Yao, H.; Liu, L.; Wang, J.; Zhang, J.; Liu, J.-N. Use of Ssp dnaB Derived Mini-Intein as a Fusion Partner for Production of Recombinant Human Brain Natriuretic Peptide in Escherichia coli. Protein Expr. Purif. 2005, 43, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Misak, N.Z. Langmuir isotherm and its application in ion-exchange reactions. React. Polym. 1993, 21, 53–64. [Google Scholar] [CrossRef]
- El Khatib, M.; Martins, A.; Bourgeois, D.; Colletier, J.P.; Adam, V. Rational design of ultrastable and reversibly photoswitchable fluorescent proteins for super-resolution imaging of the bacterial periplasm. Sci. Rep. 2016, 6, 18459. [Google Scholar] [CrossRef] [PubMed]
- Habuchi, S.; Ando, R.; Dedecker, P.; Verheijen, W.; Mizuno, H.; Miyawaki, A.; Hofkens, J. Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. Proc. Natl. Acad. Sci. USA 2005, 102, 9511–9516. [Google Scholar] [CrossRef] [PubMed]
- Voityuk, A.A.; Kummer, A.D.; Michel-Beyerle, M.E.; Rösch, N. Absorption spectra of the GFP chromophore in solution: Comparison of theoretical and experimental results. Chem. Phys. 2001, 269, 83–91. [Google Scholar] [CrossRef]
- Chattoraj, M.; King, B.A.; Bublitz, G.U.; Boxer, S.G. Ultra-fast excited state dynamics in green fluorescent protein: Multiple states and proton transfer. Proc. Natl. Acad. Sci. USA 1996, 93, 8362–8367. [Google Scholar] [CrossRef]
- Stoner-Ma, D.; Jaye, A.A.; Ronayne, K.L.; Nappa, J.; Meech, S.R.; Tonge, P.J. An alternate proton acceptor for excited-state proton transfer in green fluorescent protein: Rewiring GFP. J. Am. Chem. Soc. 2008, 130, 1227–1235. [Google Scholar] [CrossRef]
- Park, J.W.; Rhee, Y.M. Electric field keeps chromophore planar and produces high yield fluorescence in green fluorescent protein. J. Am. Chem. Soc. 2016, 138, 13619–13629. [Google Scholar] [CrossRef]
- Greer, A.M.; Huang, Z.; Oriakhi, A.; Lu, Y.; Lou, J.; Matthews, K.S.; Bondos, S.E. The Drosophila transcription factor ultrabithorax self-assembles into protein-based biomaterials with multiple morphologies. Biomacromolecules 2009, 10, 829–837. [Google Scholar] [CrossRef]
- Andrews, B.T.; Roy, M.; Jennings, P.A. Chromophore packing leads to hysteresis in GFP. J. Mol. Biol. 2009, 392, 218–227. [Google Scholar] [CrossRef]
- Huang, J.R.; Craggs, T.D.; Christodoulou, J.; Jackson, S.E. Stable intermediate states and high energy barriers in the unfolding of GFP. J. Mol. Biol. 2007, 370, 356–371. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, T.; García, A.E.; Garde, S. Molecular dynamics simulations of pressure effects on hydrophobic interactions. J. Am. Chem. Soc. 2001, 123, 10997–11003. [Google Scholar] [CrossRef] [PubMed]
- Coventry, B.; Baker, D. Protein sequence optimization with a pairwise decomposable penalty for buried unsatisfied hydrogen bonds. PLoS Comput. Biol. 2021, 17, e1008061. [Google Scholar] [CrossRef] [PubMed]
- Tsai, S.P.; Howell, D.W.; Huang, Z.; Hsiao, H.C.; Lu, Y.; Matthews, K.S.; Lou, J.; Bondos, S.E. The Effect of Protein Fusions on the Production and Mechanical Properties of Protein-Based Materials. Adv. Funct. Mater. 2015, 25, 1442–1450. [Google Scholar] [CrossRef]
- Ilangovan, U.; Ton-That, H.; Iwahara, J.; Schneewind, O.; Clubb, R.T. Structure of sortase, the transpeptidase that anchors proteins to the cell wall of Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 2001, 98, 6056–6061. [Google Scholar] [CrossRef]
- Fox, J.D.; Waugh, D.S. Maltose-binding protein as a solubility enhancer. In E. coli Gene Expression Protocols; Humana Press: Totowa, NJ, USA, 2003; pp. 99–117. [Google Scholar]
- Foos, N.; Maurel-Zaffran, C.; Mate, M.J.; Vincentelli, R.; Hainaut, M.; Berenger, H.; Pradel, J.; Saurin, A.J.; Ortiz-Lombardía, M.; Graba, Y.; et al. A flexible extension of the Drosophila ultrabithorax homeodomain defines a novel Hox/PBC interaction mode. Structure 2015, 23, 270–279. [Google Scholar] [CrossRef]
- Malde, A.K.; Zuo, L.; Breeze, M.; Stroet, M.; Poger, D.; Nair, P.C.; Oostenbrink, C.; Mark, A.E. An Automated Force Field Topology Builder (ATB) and Repository: Version 1.0. J. Chem. Theory Comput. 2011, 7, 4026–4037. [Google Scholar] [CrossRef]
- Sniegowski, J.A.; Lappe, J.W.; Patel, H.N.; Huffman, H.A.; Wachter, R.M. Base catalysis of chromophore formation in Arg96 and Glu222 variants of green fluorescent protein. J. Biol. Chem. 2005, 280, 26248–26255. [Google Scholar] [CrossRef]
Left Out | wt | Gene Library Sequence Expression Target [Designed] Hits CRO Triplet in Bold, / / N,C Termini | Designed (Variable), Complexity |
---|---|---|---|
Name | Target Piece | Glowing / Total (Format) | |
sfGFP-OPT | SMASKGEELFTGVVPILVELDGDVNGHKFSVRGEGEGDATIGKLTLKFICTT GKLPVPWPTLVTTLTYGVQCFSRYPDHMKRHDFFKSAMPEGYVQERTISFKD DGKYKTRAVVKFEGDTLVNRIELKGTDFKEDGNILGHKLEYNFNSHNVYITA DKQKNGIKANFTVRHNVEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQTV LSKDPNEKRDHMVLLEFVTAAGITHGMDELYK | ||
LOO8 | NGIKANFKIRHNV | /MASKGEELFTGVVPILVELDGDVNGHKFSVRGEGEGDAT[IN]GKL TLKFICTTGKLPVPWP[ST]LV[AT]TLTYGVQCFSRYPDHMKRHD F[AF]KSAMPEGYVQERTISF[KQ]DDG[KT]YKTRA[EV]VKFEGD TLVNRIELKG[IT]DFKEDGNILGH[KQ][LV][ER]Y[NS]F[NS] [ES]H[MN][TV][KY][IL][ST]A[DS][KQ][NQ][KS]sgifitdnvhtwt[EL][DN]GS[IV]Q[LV]A[DS][HV][DY][QS][AQ] [NK][TY]PIGDGPVLLPDNHYLS[TV]Q[ST]VLSKDPNEKRDHMV LLEFVTAAGITHG/ | 36(36), 6 × 1010 |
NS1#1 | SGIFITDNVHTWT | 0/1000 (native) | |
LOO8 | NGIKANFKIRHNV | /MASKGEELFTGVVPILVELDGDVNGHKFSVRGEGEGD AT[IN] GKLTLKFICTTG KLPVPWP[ST]LV[AT]TLTYGV[KQ]CFSRYP DHMKRHD[FY][FL]KSAMPEGYVQERTISF[KQ]DDG[KT]YKT RA[EV]VKFEGDTLVNR IELKG[IT]DFKEDGNILGH[KR] [LV][ER]Y[NS] [FS][NS][ES]H[HN][EV][KY][AI]T [AM]D[GK][NQ][EK]ygfgvfttniwlkE [DG]GS[VY][QR] [LM]A[DH][DH][KY][AQ][FQ]N[ST]PIGDGPVLLPDN[HY] YLS[GT]Q[ST]V LSKDPNEKRDHMVLLEFVTAAGITHG/ | 38(38), 1.4 × 1011 |
NS1#2 | YGFGVFTTNIWLK | 0/1000 (native) | |
LOO11 | DHMVLLEFVTAA | /MASKGEELFTGVVPILVELDGDVNGHKFSVRGEGEGDAT[N]G[KQ] [IL][I]L[R][IL][V][N]TTGKLPVPWPTL[A]TTLTYGVQC Y[FINY][K][T][T]DH[KQ]KRHDFFKSAMPEGYVQERTISF KDDGKYKTRAVVKFEGDTLVNRIELKGTDFKEDGNILGHKLEYN [I][N]SHNVYITADKQKNGIKANFTVRHNVEDGSVQLADHYQQNTPIGDG PVLLPD[Y]H[N][S][Q]T[N][ST][Y][FY][ST]K[IL][T]NEKR dmgywiesalndGITHGMDELYK/ | 37(9), 2048 |
DMG | DMGYWIESALND | 0/1000 (native) | |
LOO8 | NGIKANFTVRHNV | /MASKGEELFTGVVPILVELDGDVNGHKFSVRGEGEGDATIGKLTLKFICTT GKLPVPWPTLV[S]TLTYGVQCFSRYPDHMKRHD[Y][Y]KSAMPEGYVQER TIS[T]KDDGKYKTRAVVKFEGDTLVNRIELKGTDFKEDG[I]ILGHK[I] [Q]YN[IL]QR[HPSY][R][IV][Y][H][W][Q]D[W][S][N]ngtkgdftngnstE[N]GSV[AV]F[HKNQ][DH][A][E]QQ[S][HKNQ][A]IGQHQVLL [A]DNHYLSTQTVLSKDPNEKRDHMVLLEFVTAAGITHGMDELYK/ | 28(7), 1024 |
HIV | NGTKGDFTNGNST | 0/1000 (native) | |
LOO8 | NGIKANFKIRHNV | /MASKGEELFTGVVPILVELDGDVNGHKFSVRGEGEGDATIGKLTLKFICTTG KLPVPWPTLVTTLTYGVQCFSRYPDHMKRHD[I][F]KSAMPEGYIQERT ISFKDDGKYKTRAVVKFEGDTLVNRIELKGTDFKEDGNILGHKLEYNFN SHNVYITA[DE][DEGHIKNMQRSV][GE][DEGHIKNMQRSV]ygIKAN FKIRHNVEDGSVQLADHYQQN[AST]PIGDGPVL[LV]PDNHYLSTQTV LSKDPNEKRDHMVLLEFVTAAGITHG/ | 9(6), 3432 |
NS1#3 | YGFGVFTTNIWLK | 10/65 (native) | |
LOO8 | NGIKANFKIRHNV | MASKGEELFTGVVPILVELDGDVNGHKFSVRGEGEGDATIGKLTLKFICTTG KLPVPWPTLVTTLTYGVQCFSRYPDHMKRHD[I][F]KSAMPEGYIQERT ISFKDDGKYKTRAVVKFEGDTLVNRIELKGTDFKEDGNILGHKLEYNFN SHNVYITA[DE][DEHKNQRS][GE][DEHKNQRS]//ygIKANFKIRHNVED GSVQLADHYQQN[AST]PIGDGPVL[LV]PDNHYLSTQTVLSKDPNEKRDH MVLLEFVTAAGITHGMDELYKGGTGGS | 9(6), 1536 |
NS1#4 | YGFGVFTTNIWLK | 5/70 (LII) | |
LOO7 | FNSHNVYIT | MASKGEELFTGVVPILVELDGDVNGHKFSVRGEGEGDATIGKLTLKFICTT GKLPVPWPTL[DENKQRSTV][NST]TLTYGVQCFSRYPDHMKRHD[AFLM] FKSAMPEGYVQERTISFKDDGKYKTRAVVKFEGDTLVNRIELKGTDFKEDG NILGHKLEYN/nsvtniele/ADKQKNG[AGILV]K[AG][DEKNQR] F[HQRTNK][KQTNS]RHNVEDGSVQLADHYQQNTPIGDGPVLLPD[KNQR] H[KNQR]LST[DENKQRY][NST]V[ALVNQ]SKDPNEKRDHMVLLEFVTAA GITHGMDELYKGGTGGS | 13(13), 3.9 × 109 |
EDIII | NSVTNIELE NSVTNIELE | 0,2/250 (native), >4/250 (LII), 0/250 (LOO) | |
LOO7 | NSHNVYITAD | MSKGEELFTGVVPILVELDGDVNGHKFSVRGEGEGDATIGKLTLKFI CTTGKLPVPWPTLVTTLTYGVQCFSRYPDHMKR HD[FW][FM]KSA MPEGYVQERTISFKDDGKYKTRAVVKFEGDTLVNRIELKGTDFKEDG NILGHKLEYNF/sshevslgvs/KQKNG[ILV] K[I][NST][F] [T][IMV][NST]HNVEDGSVQLADHYQQNTPIGDGPVLLPDNH [HKR][FML][HKR][T][NST][T]VLSKDPNEKRDHMVLLEF [IV]TAAGITHGMDELYKGGTGGS | 16(11), 34992 |
HA4 | SSHEVSLGVS | 75/2500 (LOO) | |
LOO7 | EYNFNSHNVYITAD | MASKGEELFTGVVPILVELDGDVNGHKFSVRGEGEGDAT[IN]GKLTLKFICTTG KLPVPWPTLV[AGT]TL[AT]YGVQCFSRYPDHMKRHD[CFLW][F]KS[AT] MPEGYVQERTISFKDDGTYKTRAEVRFEGDTLVNRIELKGIDFKEDGNILGHKL /ksswsshevslgvs/KQKNGIK[AGI][T]FT[AGV]R[HYFLV][DEKN] VEDGSVQLADHYQQNTPIGDGPVLLPDNH[HNSTY]L[K]T[T][AHYGST] VLS[KY]DPNEKRDHMVLLEFVTAAGITHGMDELYKGGTGGS | 15(11), 276480 |
HA5 | KSSWSSHEVSLGVS | 8/50 (native), 1/8 (LOO) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banerjee, S.; Fraser, K.; Crone, D.E.; Patel, J.C.; Bondos, S.E.; Bystroff, C. Challenges and Solutions for Leave-One-Out Biosensor Design in the Context of a Rugged Fitness Landscape. Sensors 2024, 24, 6380. https://doi.org/10.3390/s24196380
Banerjee S, Fraser K, Crone DE, Patel JC, Bondos SE, Bystroff C. Challenges and Solutions for Leave-One-Out Biosensor Design in the Context of a Rugged Fitness Landscape. Sensors. 2024; 24(19):6380. https://doi.org/10.3390/s24196380
Chicago/Turabian StyleBanerjee, Shounak, Keith Fraser, Donna E. Crone, Jinal C. Patel, Sarah E. Bondos, and Christopher Bystroff. 2024. "Challenges and Solutions for Leave-One-Out Biosensor Design in the Context of a Rugged Fitness Landscape" Sensors 24, no. 19: 6380. https://doi.org/10.3390/s24196380
APA StyleBanerjee, S., Fraser, K., Crone, D. E., Patel, J. C., Bondos, S. E., & Bystroff, C. (2024). Challenges and Solutions for Leave-One-Out Biosensor Design in the Context of a Rugged Fitness Landscape. Sensors, 24(19), 6380. https://doi.org/10.3390/s24196380