Blind Deblurring Method for CASEarth Multispectral Images Based on Inter-Band Gradient Similarity Prior
Abstract
:1. Introduction
- (1)
- Most blind deblurring algorithms are designed for single images and tend to overlook the spectral dimension when applied to multispectral image deblurring.
- (2)
- Most multiband deblurring algorithms are based on hyperspectral images and are non-blind. However, due to the lower spectral resolution of multispectral images, these methods are not suitable for multispectral images.
- (3)
- Deep learning-based methods often involve numerous parameters, and the training datasets for deblurring typically do not include remote sensing images. As a result, these methods may produce unstable results when applied to remote sensing images or data outside the training sets.
- (1)
- We found that the gradients of images across different bands exhibit high similarity, and the gradient differences between bands in clear images are sparser than in blurred ones. Therefore, the inter-band gradient similarity prior is proposed.
- (2)
- We propose a new deblurring model based on the inter-band gradient similarity prior and the PMP-based model, and then transform the deblurring problem into a minimization problem.
- (3)
- A new algorithm is designed by combining the half-quadratic splitting and alternating minimization methods. This algorithm demonstrates excellent deblurring performance and is less sensitive to parameter adjustments.
2. Single-Image Deblurring with PMP Prior
2.1. MAP Framework
2.2. PMP-Based Deblurring Model
3. Multispectral Image Deblurring with Inter-Band Similarity and PMP Prior
3.1. CASEarth Multispectral Images
3.2. Inter-Band Gradient Similarity Prior
3.3. Deblurring Algorithm with Inter-Band Similarity Prior and PMP Prior
3.3.1. Latent Image Estimation
- Estimating
- 2.
- Estimating
- 3.
- Estimating
3.3.2. Blur Kernel Estimation
3.3.3. B1 Band Image Denoising Method
4. Experiments and Results
4.1. Experiment Setup and Evaluation Metrics
- Point Sharpness
- 2.
- Edge Strength Level
- 3.
- RMS Contrast
4.2. Experimental Results
4.2.1. Deblurring Experiments and Analysis
4.2.2. Deblurring Performance for Each Band
4.2.3. Large-Scale Application
4.2.4. Effect of Hyper-Parameters
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, H. Big Earth data: A new frontier in Earth and information sciences. Big Earth Data 2017, 1, 4–20. [Google Scholar] [CrossRef]
- Zhu, X.; Milanfar, P. Removing Atmospheric Turbulence via Space-Invariant Deconvolution. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 157–170. [Google Scholar] [CrossRef]
- Shu, J.; Xie, C.; Gao, Z. Blind Restoration of Atmospheric Turbulence-Degraded Images Based on Curriculum Learning. Remote Sens. 2022, 14, 4797. [Google Scholar] [CrossRef]
- Gajjar, R.; Zaveri, T.; IEEE. Defocus Blur Parameter Estimation Using Polynomial Expression and Signature Based Methods. In Proceedings of the 4th International Conference on Signal Processing and Integrated Networks (SPIN), Amity Univ, Noida, India, 2–3 February 2017. [Google Scholar]
- Wang, R.; Ma, G.; Qin, Q.; Shi, Q.; Huang, J. Blind UAV Images Deblurring Based on Discriminative Networks. Sensors 2018, 18, 2874. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, J.; Xu, Z.; Li, Q.; Feng, H. Image deblurring by motion estimation for remote sensing. In Proceedings of the Conference on Satellite Data Compression, Communications, and Processing VI, San Diego, CA, USA, 3–5 August 2010. [Google Scholar]
- Fisher, A.; Flood, N.; Danaher, T. Comparing Landsat water index methods for automated water classification in eastern Australia. Remote Sens. Environ. 2016, 175, 167–182. [Google Scholar] [CrossRef]
- Gudzius, P.; Kurasova, O.; Darulis, V.; Filatovas, E. Deep learning-based object recognition in multispectral satellite imagery for real-time applications. Mach. Vision Appl. 2021, 32, 98. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Cohen, W.B.; Schroeder, T.A. Trajectory-based change detection for automated characterization of forest disturbance dynamics. Remote Sens. Environ. 2007, 110, 370–386. [Google Scholar] [CrossRef]
- Fergus, R.; Singh, B.; Hertzmann, A.; Roweis, S.T.; Freeman, W.T. Removing camera shake from a single photograph. ACM Trans. Graph. 2006, 25, 787–794. [Google Scholar] [CrossRef]
- Levin, A.; Fergus, R.; Durand, F.; Freeman, W.T. Image and depth from a conventional camera with a coded aperture. ACM Trans. Graph. 2007, 26, 70-es. [Google Scholar] [CrossRef]
- Jon, K.; Liu, J.; Wang, X.; Zhu, W.; Xing, Y. Weighted Hyper-Laplacian Prior with Overlapping Group Sparsity for Image Restoration under Cauchy Noise. J. Sci. Comput. 2021, 87, 64. [Google Scholar] [CrossRef]
- Krishnan, D.; Fergus, R. Fast image deconvolution using hyper-Laplacian priors. In Proceedings of the 22nd International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 7–10 December 2009. [Google Scholar]
- Qi, L.; Zhang, R.; Hu, Z.; Li, L.; Wang, Q.; Ni, X.; Chen, F. Fast Thermal Infrared Image Restoration Method Based on On-Orbit Invariant Modulation Transfer Function. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–15. [Google Scholar] [CrossRef]
- Pan, J.; Hu, Z.; Su, Z.; Yang, M.H. Deblurring Text Images via L0 Regularized Intensity and Gradient Prior. In Proceedings of the 27th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014. [Google Scholar]
- Xu, L.; Zheng, S.; Jia, J. Unnatural L0 Sparse Representation for Natural Image Deblurring. In Proceedings of the 26th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, OR, USA, 23–28 June 2013. [Google Scholar]
- Shan, Q.; Jia, J.; Agarwala, A. High-quality motion deblurring from a single image. ACM Trans. Graph. 2008, 27, 1–10. [Google Scholar]
- Li, Z.; Yang, M.; Cheng, L.; Jia, X. Blind Text Image Deblurring Algorithm Based on Multi-Scale Fusion and Sparse Priors. IEEE Access 2023, 11, 16042–16055. [Google Scholar] [CrossRef]
- Pan, J.; Sun, D.; Pfister, H.; Yang, M.-H. Blind Image Deblurring Using Dark Channel Prior. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 27–30 June 2016. [Google Scholar]
- Wen, F.; Ying, R.; Liu, Y.; Liu, P.; Trieu-Kien, T. A Simple Local Minimal Intensity Prior and an Improved Algorithm for Blind Image Deblurring. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 2923–2937. [Google Scholar] [CrossRef]
- Lim, H.; Yu, S.; Park, K.; Seo, D.; Paik, J. Texture-Aware Deblurring for Remote Sensing Images Using l0-Based Deblurring and l2-Based Fusion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3094–3108. [Google Scholar] [CrossRef]
- Yan, Y.; Ren, W.; Guo, Y.; Wang, R.; Cao, X. Image Deblurring via Extreme Channels Prior. In Proceedings of the 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Eqtedaei, A.; Ahmadyfard, A. Blind image deblurring using both L0 and L1 regularization of Max–min prior. Neurocomputing 2024, 592, 19. [Google Scholar] [CrossRef]
- Gao, H.J.; Feng, M.F. Blind deblurring text images via Beltrami regularization. Image Vision Comput. 2024, 147, 14. [Google Scholar] [CrossRef]
- Cheng, Z.Z.; Luo, B.; Xu, L.; Li, B.; Pei, Z.; Zhang, C. Blind image deblurring via content adaptive method. Signal Process. Image Commun. 2023, 113, 14. [Google Scholar] [CrossRef]
- Xie, Y.; Feng, D.; Chen, H.; Liao, Z.; Zhu, J.; Li, C.; Wook Baik, S. An omni-scale global–local aware network for shadow extraction in remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 2022, 193, 29–44. [Google Scholar] [CrossRef]
- Xie, Y.; Zhan, N.; Zhu, J.; Xu, B.; Chen, H.; Mao, W.; Luo, X.; Hu, Y. Landslide extraction from aerial imagery considering context association characteristics. Int. J. Appl. Earth Obs. Geoinf. 2024, 131, 103950. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, J.; Chen, H.; Xie, Y.; Gu, H.; Lian, H. A cross-view intelligent person search method based on multi-feature constraints. Int. J. Digit. Earth 2024, 17, 2346259. [Google Scholar] [CrossRef]
- Nah, S.; Kim, T.H.; Lee, K.M. Deep Multi-scale Convolutional Neural Network for Dynamic Scene Deblurring. In Proceedings of the 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Kupyn, O.; Budzan, V.; Mykhailych, M.; Mishkin, D.; Matas, J. DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks. In Proceedings of the 31st IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Xu, L.; Ren, J.S.J.; Liu, C.; Jia, J. Deep Convolutional Neural Network for Image Deconvolution. In Proceedings of the 28th Conference on Neural Information Processing Systems (NIPS), Montreal, CANADA, Montreal, QC, Canada, 8–13 December 2014. [Google Scholar]
- Gong, D.; Yang, J.; Liu, L.; Zhang, Y.; Reid, I.; Shen, C.; van den Hengel, A.; Shi, Q. From Motion Blur to Motion Flow: A Deep Learning Solution for Removing Heterogeneous Motion Blur. In Proceedings of the 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Xu, X.; Pan, J.; Zhang, Y.-J.; Yang, M.-H. Motion Blur Kernel Estimation via Deep Learning. IEEE Trans. Image Process. 2018, 27, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Gong, J.; Jiang, S.; Shi, T.; Yang, J.; Bao, G.; Zhi, X. A method for remote sensing image restoration based on the system degradation model. Results Phys. 2024, 56, 107262. [Google Scholar] [CrossRef]
- Li, L.; Pan, J.; Lai, W.-S.; Gao, C.; Sang, N.; Yang, M.H. Learning a Discriminative Prior for Blind Image Deblurring. In Proceedings of the 31st IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Asim, M.; Shamshad, F.; Ahmed, A. Blind Image Deconvolution Using Deep Generative Priors. IEEE Trans. Comput. Imaging 2020, 6, 1493–1506. [Google Scholar] [CrossRef]
- Ren, D.; Zhang, K.; Wang, Q.; Hu, Q.; Zuo, W. Neural Blind Deconvolution Using Deep Priors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Electr Network, Seattle, WA, USA, 14–19 June 2020. [Google Scholar]
- Li, L.; Song, M.; Zhang, Q.; Dong, Y.; Wang, Y.; Yuan, Q. Local Extremum Constrained Total Variation Model for Natural and Hyperspectral Image Non-Blind Deblurring. IEEE Trans. Circuits Syst. Video Technol. 2024, 1. [Google Scholar] [CrossRef]
- He, P.; Li, Z.; Wang, J.; Tang, Y.; Bai, Y.; Lv, Q. Single-Lens Imaging Spectral Restoration Method Based on Gradient Prior Information Optimization. Appl. Sci. 2023, 13, 10632. [Google Scholar] [CrossRef]
- Fang, H.; Luo, C.; Zhou, G.; Wang, X. Hyperspectral Image Deconvolution with a Spectral-Spatial Total Variation Regularization. Can. J. Remote Sens. 2017, 43, 384–395. [Google Scholar] [CrossRef]
- Lefkimmiatis, S.; Osher, S. Nonlocal Structure Tensor Functionals for Image Regularization. IEEE Trans. Comput. Imaging 2015, 1, 16–29. [Google Scholar] [CrossRef]
- Cao, W.; Yao, J.; Sun, J.; Han, G. A tensor-based nonlocal total variation model for multi-channel image recovery. Signal Process. 2018, 153, 321–335. [Google Scholar] [CrossRef]
- Geng, L.; Nie, X.; Niu, S.; Yin, Y.; Lin, J. Structural Compact Core Tensor Dictionary Learning For Multispectral Remote Sensing Image Deblurring. In Proceedings of the 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018. [Google Scholar]
- Geng, L.; Cui, C.; Guo, Q.; Niu, S.; Zhang, G.; Fu, P. Robust Core Tensor Dictionary Learning with Modified Gaussian Mixture Model for Multispectral Image Restoration. CMC-Comput. Mater. Contin. 2020, 65, 913–928. [Google Scholar] [CrossRef]
- Han, J.; Zhang, S.L.; Ye, Z. Combined Patch-wise Minimal-maximal Pixels Regularization For Deblurring. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2020, V-1-2020, 17–23. [Google Scholar] [CrossRef]
- Zhang, Z.; Zheng, L.; Xu, W.; Gao, T.; Wu, X.; Yang, B. Blind Remote Sensing Image Deblurring Based on Overlapped Patches’ Non-Linear Prior. Sensors 2022, 22, 7858. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.; Zhang, W.; Chu, Q.; Ding, H.; Hu, Y. Multispectral Remote Sensing Image Deblurring Using Auxiliary Band Gradient Information. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5403418. [Google Scholar] [CrossRef]
- Wen, F.; Pei, L.; Yang, Y.; Yu, W.; Liu, P. Efficient and Robust Recovery of Sparse Signal and Image Using Generalized Nonconvex Regularization. IEEE Trans. Comput. Imaging 2017, 3, 566–579. [Google Scholar] [CrossRef]
- Petschnigg, G.; Agrawala, M.; Hoppe, H.; Szeliski, R.; Cohen, M.; Toyama, K. Digital photography with flash and no-flash image pairs. ACM Trans. Graph. 2004, 23, 664–672. [Google Scholar] [CrossRef]
- Whyte, O.; Sivic, J.; Zisserman, A. Deblurring Shaken and Partially Saturated Images. Int. J. Comput. Vision 2014, 110, 185–201. [Google Scholar] [CrossRef]
- Chen, L.; Fang, F.; Wang, T.; Zhang, G.; Soc, I.C. Blind Image Deblurring with Local Maximum Gradient Prior. In Proceedings of the 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019. [Google Scholar]
- Rishnan, D.; Tay, T.; Fergus, R. Blind Deconvolution Using a Normalized Sparsity Measure. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, CO, USA, 20–25 June 2011. [Google Scholar]
Band | Type | Wavelength (nm) | SNR (dB) | Resolution (m) | Swath Width (km) |
---|---|---|---|---|---|
B1 | Deep blue 1 | 374–427 | ≥130 | 10 | 300 |
B2 | Deep blue 2 | 410–467 | ≥150 | ||
B3 | Blue | 457–529 | |||
B4 | Green | 510–597 | |||
B5 | Red | 618–696 | |||
B6 | Red edge | 744–813 | |||
B7 | Near infrared | 798–911 |
Band | B2 | B3 | B4 | B5 | B6 | B7 |
---|---|---|---|---|---|---|
NCC | 0.9395 | 0.8756 | 0.7944 | 0.7680 | 0.1100 | 0.0906 |
Method | Figure 7 | Method | Figure 8 | ||||
---|---|---|---|---|---|---|---|
P | ESL | Crms | P | ESL | Crms | ||
Origin | 0.0446 | 0.2870 | 0.5906 | origin | 0.0220 | 0.2470 | 0.9042 |
LMG * | 0.0703 | 0.3544 | 0.6627 | LMG ** | 0.0316 | 0.2781 | 0.9747 |
NSM ** | 0.0969 | 0.4043 | 0.7106 | NSM ** | 0.0386 | 0.3034 | 0.9806 |
Max–min ^ | 0.0866 | 0.3817 | 0.8584 | Max–min ^ | 0.0396 | 0.2617 | 0.9938 |
PMP | 0.0676 | 0.3364 | 0.6628 | PMP | 0.0261 | 0.2539 | 0.9112 |
CPMMP | 0.0692 | 0.3402 | 0.6691 | CPMMP | 0.0260 | 0.2540 | 0.9107 |
Our result | 0.0697 | 0.3415 | 0.6716 | Our result | 0.0288 | 0.2576 | 0.9159 |
Method | Figure 9 | Method | Figure 10 | ||||
---|---|---|---|---|---|---|---|
P | ESL | Crms | P | ESL | Crms | ||
Origin | 0.0323 | 0.2704 | 0.6096 | origin | 0.0402 | 0.2884 | 0.6387 |
LMG | 0.0412 | 0.3006 | 0.6534 | LMG | 0.0607 | 0.3478 | 0.6926 |
NSM ** | 0.0501 | 0.3177 | 0.6551 | NSM ** | 0.0879 | 0.4112 | 0.7532 |
Max–min ^ | 0.0612 | 0.3301 | 0.7717 | Max–min ^ | 0.0801 | 0.3873 | 0.8612 |
PMP | 0.0483 | 0.3074 | 0.6813 | PMP | 0.0607 | 0.3355 | 0.6888 |
CPMMP | 0.0483 | 0.3080 | 0.6812 | CPMMP | 0.0618 | 0.3376 | 0.6913 |
Our result | 0.0530 | 0.3120 | 0.6963 | Our result | 0.0697 | 0.3602 | 0.7602 |
Method | Figure 11 | Method | Figure 12 | ||||
---|---|---|---|---|---|---|---|
P | ESL | Crms | P | ESL | Crms | ||
Origin | 0.0210 | 0.2114 | 0.7802 | origin | 0.0408 | 0.2726 | 0.4775 |
LMG | 0.0283 | 0.2448 | 0.8029 | LMG | 0.0678 | 0.3356 | 0.5219 |
NSM | 0.0320 | 0.2548 | 0.8033 | NSM ** | 0.0918 | 0.3855 | 0.5465 |
Max–min ^ | 0.0432 | 0.2744 | 0.8931 | Max–min ^ | 0.0868 | 0.3701 | 0.6293 |
PMP | 0.0321 | 0.2445 | 0.8315 | PMP | 0.0645 | 0.3192 | 0.5294 |
CPMMP | 0.0327 | 0.2466 | 0.8348 | CPMMP | 0.0642 | 0.3206 | 0.5313 |
Our result | 0.0349 | 0.2497 | 0.8365 | Our result | 0.0700 | 0.3315 | 0.5457 |
Method | MII 01 | MII 02 | MII 03 | ||||||
---|---|---|---|---|---|---|---|---|---|
P | ESL | Crms | P | ESL | Crms | P | ESL | Crms | |
Blurred | 0.4860 | 0.2900 | 0.6548 | 0.0239 | 0.2503 | 0.7501 | 0.0401 | 0.2921 | 0.4137 |
400 × 400 | 0.0815 | 0.3567 | 0.7906 | 0.0336 | 0.2636 | 0.7614 | 0.0671 | 0.3464 | 0.5058 |
2000 × 2000 | 0.0839 | 0.3606 | 0.8093 | 0.0377 | 0.2714 | 0.7783 | 0.0662 | 0.3469 | 0.5053 |
4000 × 4000 | 0.0858 | 0.3653 | 0.8342 | 0.0408 | 0.2711 | 0.8178 | 0.0632 | 0.3394 | 0.4929 |
Method | MII 04 | MII 05 | MII 06 | ||||||
---|---|---|---|---|---|---|---|---|---|
P | ESL | Crms | P | ESL | Crms | P | ESL | Crms | |
Blurred | 0.0444 | 0.2888 | 0.6262 | 0.0255 | 0.2164 | 0.3564 | 0.0484 | 0.2867 | 0.4426 |
400 × 400 | 0.0758 | 0.3558 | 0.6878 | 0.0419 | 0.2590 | 0.3833 | 0.0828 | 0.3489 | 0.5261 |
2000 × 2000 | 0.0737 | 0.3458 | 0.6761 | 0.0377 | 0.2484 | 0.3764 | 0.0821 | 0.3469 | 0.5220 |
4000 × 4000 | 0.0722 | 0.3445 | 0.6713 | 0.0356 | 0.2428 | 0.3725 | 0.0868 | 0.3586 | 0.5338 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, M.; Liu, J.; Wang, F. Blind Deblurring Method for CASEarth Multispectral Images Based on Inter-Band Gradient Similarity Prior. Sensors 2024, 24, 6259. https://doi.org/10.3390/s24196259
Zhu M, Liu J, Wang F. Blind Deblurring Method for CASEarth Multispectral Images Based on Inter-Band Gradient Similarity Prior. Sensors. 2024; 24(19):6259. https://doi.org/10.3390/s24196259
Chicago/Turabian StyleZhu, Mengying, Jiayin Liu, and Feng Wang. 2024. "Blind Deblurring Method for CASEarth Multispectral Images Based on Inter-Band Gradient Similarity Prior" Sensors 24, no. 19: 6259. https://doi.org/10.3390/s24196259
APA StyleZhu, M., Liu, J., & Wang, F. (2024). Blind Deblurring Method for CASEarth Multispectral Images Based on Inter-Band Gradient Similarity Prior. Sensors, 24(19), 6259. https://doi.org/10.3390/s24196259