Development of Lasing Silica Microsphere for High-Speed DNA Molecular Detection
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lander, E.S.; Linton, L.M.; Birren, B.; Nusbaum, C.; Zody, M.C.; Baldwin, J.; Devon, K.; Dewar, K.; Doyle, M.; FitzHugh, W.; et al. Initial sequencing and analysis of the human genome. Nature 2001, 409, 860–921. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, R.; von Beroldingen, C.H.; Sensabaugh, G.F.; Erlich, H.A. DNA typing from single hairs. Nature 1988, 332, 543–546. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.P.; Bartek, J. The DNA-damage response in human biology and disease. Nature 2009, 461, 1071–1078. [Google Scholar] [CrossRef] [PubMed]
- van ’t Veer, L.J.; Bernards, R. Enabling personalized cancer medicine through analysis of gene-expression patterns. Nature 2008, 452, 564–570. [Google Scholar] [CrossRef]
- Lupski, J.R. Genomic disorders: Structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet. 1998, 14, 417–422. [Google Scholar] [CrossRef]
- Pollack, J.R.; Perou, C.M.; Alizadeh, A.A.; Eisen, M.B.; Pergamenschikov, A.; Williams, C.F.; Jeffrey, S.S.; Botstein, D.; Brown, P.O. Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat. Genet. 1999, 23, 41–46. [Google Scholar] [CrossRef]
- Robertson, K.D. DNA methylation and human disease. Nat. Rev. Genet. 2005, 6, 597–610. [Google Scholar] [CrossRef]
- Taylor, R.W.; Turnbull, D.M. Mitochondrial DNA mutations in human disease. Nat. Rev. Genet. 2005, 6, 389–402. [Google Scholar] [CrossRef]
- Shapiro, B.; Hofreiter, M. A paleogenomic perspective on evolution and gene function: New insights from ancient DNA. Science 2014, 343, 1236573. [Google Scholar] [CrossRef]
- Shi, H.; Maier, S.; Nimmrich, I.; Yan, P.S.; Caldwell, C.W.; Olek, A.; Huang, T.H. Oligonucleotide-based microarray for DNA methylation analysis: Principles and applications. J. Cell. Biochem. 2003, 88, 138–143. [Google Scholar] [CrossRef]
- Cox, W.G.; Singer, V.L. Fluorescent DNA hybridization probe preparation using amine modification and reactive dye coupling. BioTechniques 2004, 36, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Reed, G.H.; Wittwer, C.T. Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis. Clin. Chem. 2004, 50, 1748–1754. [Google Scholar] [CrossRef] [PubMed]
- Canales, R.D.; Luo, Y.; Willey, J.C.; Austermiller, B.; Barbacioru, C.C.; Boysen, C.; Hunkapiller, K.; Jensen, R.V.; Knight, C.R.; Lee, K.Y.; et al. Evaluation of DNA microarray results with quantitative gene expression platforms. Nat. Biotechnol. 2006, 24, 1115–1122. [Google Scholar] [CrossRef]
- Montgomery, J.; Wittwer, C.T.; Palais, R.; Zhou, L. Simultaneous mutation scanning and genotyping by high-resolution DNA melting analysis. Nat. Protoc. 2007, 2, 59–66. [Google Scholar] [CrossRef]
- Zeglis, B.M.; Barton, J.K. DNA base mismatch detection with bulky rhodium intercalators: Synthesis and applications. Nat. Protoc. 2007, 2, 357–371. [Google Scholar] [CrossRef]
- Wu, Z.; Kou, R.; Ni, K.; Song, R.; Li, Y.; Li, T.; Zhang, H. DNA Extraordinarily Stable Hairpin-Based Biosensors for Rapid Detection of DNA Ligases. Biosensors 2023, 13, 875. [Google Scholar] [CrossRef]
- Suter, J.D.; White, I.M.; Zhu, H.; Shi, H.; Caldwell, C.W.; Fan, X. Label. Label-free quantitative DNA detection using the liquid core optical ring resonator. Biosens. Bioelectron. 2008, 23, 1003–1009. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Shopova, S.I.; Wu, C.S.; Arnold, S.; Fan, X. Bioinspired optofluidic FRET lasers via DNA scaffolds. Proc. Natl Acad. Sci. USA 2010, 107, 16039–16042. [Google Scholar] [CrossRef]
- Lee, W.; Fan, X. Intracavity DNA melting analysis with optofluidic lasers. Anal. Chem. 2012, 84, 9558–9563. [Google Scholar] [CrossRef]
- Sun, Y.; Fan, X. Distinguishing DNA by analog-to-digital-like conversion by using optofluidic lasers. Angew. Chem. Int. Ed. 2012, 51, 1236–1239. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, H.; Lee, W.; Sun, Y.; Zhu, D.; Pei, H.; Fan, C.; Fan, X. Self-assembled DNA tetrahedral optofluidic lasers with precise and tunable gain control. Lab Chip 2013, 13, 3351–3354. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Ritt, M.; Sivaramakrishnan, S.; Sun, Y.; Fan, X. Optofluidic lasers with a single molecular layer of gain. Lab Chip 2014, 14, 4590–4595. [Google Scholar] [CrossRef]
- Lee, W.; Chen, Q.; Fan, X.; Yoon, D.K. Digital DNA detection based on a compact optofluidic laser with ultra-low sample consumption. Lab Chip 2016, 16, 4770–4776. [Google Scholar] [CrossRef] [PubMed]
- Hou, M.; Liang, X.; Zhang, T.; Qiu, C.; Chen, J.; Liu, S.; Wang, W.; Fan, X. DNA melting analysis with optofluidic lasers based on Fabry-Perot microcavity. ACS Sens. 2018, 3, 1750–1755. [Google Scholar] [CrossRef]
- Shopova, S.I.; Zhou, H.; Fan, X.; Zhang, P. Optofluidic ring resonator based dye laser. Appl. Phys. Lett. 2007, 90, 221101. [Google Scholar] [CrossRef]
- Lee, W.; Luo, Y.; Zhu, Q.; Fan, X. Versatile optofluidic ring resonator lasers based on microdroplets. Opt. Express 2011, 19, 19668–19674. [Google Scholar] [CrossRef] [PubMed]
- Jun, C.S.; Lee, W. High-throughput DNA analysis platform based on an optofluidic ring resonator laser. Appl. Sci. 2022, 12, 12143. [Google Scholar] [CrossRef]
- Li, H.; Guo, Y.; Sun, Y.; Reddy, K.; Fan, X. Analysis of single nanoparticle detection by using 3-dimensionally confined optofluidic ring resonators. Opt. Express 2010, 18, 25081–25088. [Google Scholar] [CrossRef]
- Lee, W.; Sun, Y.; Li, H.; Reddy, K.; Sumetsky, M.; Fan, X. A quasi-droplet optofluidic ring resonator laser using a micro-bubble. Appl. Phys. Lett. 2011, 99, 091102. [Google Scholar] [CrossRef]
ssDNA | Target | Base Mismatch |
---|---|---|
Sequence 1 | 5′-ACA ACA AAG AAC ATA CAT AGG-3′ | 5′-ACA ACA AAG AAC ATA CAT AGG-3′ |
Sequence 2 | 5′-CCT ATG TAT GTT CTT TGT TGT-Cy3-3′ | 5′-CCT ATG TAT ATT CTT TGT TGT-Cy3-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jun, C.S.; Lee, W. Development of Lasing Silica Microsphere for High-Speed DNA Molecular Detection. Sensors 2024, 24, 6088. https://doi.org/10.3390/s24186088
Jun CS, Lee W. Development of Lasing Silica Microsphere for High-Speed DNA Molecular Detection. Sensors. 2024; 24(18):6088. https://doi.org/10.3390/s24186088
Chicago/Turabian StyleJun, Chan Seok, and Wonsuk Lee. 2024. "Development of Lasing Silica Microsphere for High-Speed DNA Molecular Detection" Sensors 24, no. 18: 6088. https://doi.org/10.3390/s24186088
APA StyleJun, C. S., & Lee, W. (2024). Development of Lasing Silica Microsphere for High-Speed DNA Molecular Detection. Sensors, 24(18), 6088. https://doi.org/10.3390/s24186088