Development and Test of Low-Cost Multi-Channel Multi-Frequency Lock-In Amplifier for Health and Environment Sensing
Abstract
:1. Introduction
2. Principles, Materials, and Methods
2.1. ENEA DSP Box Due Hardware
- DC block and a DC offset circuitry necessary to pull up the input signal in case of negative signals, such as in the case of output from Photo Multiplier Tubes (PMTs);
- Anti-aliasing low-pass filters;
- Programmable Gain Amplifier (PGA model MCP6S21), necessary in the case of very low signal, outside the native range of the LIA.Two output channels (OUT1 and OUT2):
- Low-pass reconstruction filter;
- Output driver.
2.2. Microcontroller Firmware
- Communication with the Host PC and PGA setup;
- Dual-channel oscilloscope;
- Dual-channel generator;
- Quad-LIA—frequency setting and measurements.
2.3. Host PC Software and User Interface
2.3.1. Oscilloscope GUI
2.3.2. Quad-LIA GUI
2.3.3. Synthesis of Red-Emitting Carbon Dots
3. Experiments and Results
3.1. LIA Electrical Testing and Characterization
3.2. Application to Photoluminescence Measurements: Single-Channel Single-Frequency Mode
3.3. Application to Photoluminescence Measurements: Two-Channel Two-Frequency Mode
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neri, C.; Pollastrone, F.; Tudisco, O. Fully Digital implementation of a high dynamic fast Vector Voltmeter. In Proceedings of the 2009 23rd IEEE/NPSS Symposium on Fusion Engineering, San Diego, CA, USA, 1–5 June 2009; pp. 1–4. [Google Scholar] [CrossRef]
- Tudisco, O.; Lucca Fabris, A.; Falcetta, C.; Accatino, L.; De Angelis, R.; Manente, M.; Ferri, F.; Florean, M.; Neri, C.; Mazzotta, C.; et al. A microwave interferometer for small and tenuous plasma density measurements. Rev. Sci. Instrum. 2013, 84, 033505. [Google Scholar] [CrossRef] [PubMed]
- Neri, C.; Bartolini, L.; Coletti, A.; De Collibus, M.F.; Fornetti, G.; Lupini, S.; Pollastrone, F.; Semeraro, L.; Talarico, C. Advanced digital processing for amplitude and range determination in optical RADAR systems [fusion reactor inspection]. IEEE Trans. Nucl. Sci. 2022, 49, 417–422. [Google Scholar] [CrossRef]
- Pollastrone, F.; Piccinini, M.; Pizzoferrato, R.; Palucci, A.; Montereali, R.M. Fully-digital low-frequency lock-in amplifier for photoluminescence measurements. Analog. Integr. Circ. Sig. Process 2023, 115, 67–76. [Google Scholar] [CrossRef]
- Pollastrone, F.; Neri, C.; Florean, M.; Ciccone, G. FTU bolometer electronic system upgrade. Fusion Eng. Des. 2013, 88, 1441–1444. [Google Scholar] [CrossRef]
- Harvie, A.J.; de Mello, J.C. OLIA: An open-source digital lock-in amplifier. Front. Sens. 2023, 4, 1102176. [Google Scholar] [CrossRef]
- Maya, P.; Calvo, B.; Sanz-Pascual, M.T.; Osorio, J. Low Cost Autonomous Lock-In Amplifier for Resistance/Capacitance Sensor Measurements. Electronics 2019, 8, 1413. [Google Scholar] [CrossRef]
- Bengtsson, L.E. A microcontroller-based lock-in amplifier for sub-milliohm resistance measurements. Rev. Sci. Instrum. 2012, 83, 075103. [Google Scholar] [CrossRef] [PubMed]
- Maya-Hernández, P.M.; Álvarez-Simón, L.C.; Sanz-Pascual, M.T.; Calvo-López, B. An integrated low-power lock-in amplifier and its application to gas detection. Sensors 2014, 14, 15880–15899. [Google Scholar] [CrossRef] [PubMed]
- Fiorani, L.; Pollastrone, F.; Nuvoli, M.; Puiu, A.; Menicucci, N.I. Brevetto Italia 102021000032276 Title “Un Apparato e un Metodo Fotoacustico per Rilevare un Analita in un Campione di un Materiale da Ispezionare”. Available online: https://brevetti.enea.it/elenco.php (accessed on 10 September 2024).
- Mehta, J.; Bhardwaj, S.K.; Bhardwaj, N.; Paul, A.; Kumar, P.; Kim, K.H.; Deep, A. Progress in the biosensing techniques for trace-level heavy metals. Biotechnol. Adv. 2016, 34, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Shi, Z.; Jiang, Z.; Zhang, J.; Wang, F.; Huang, X. Distribution and bioaccumulation of heavy metals in marine organisms in east and west Guangdong coastal regions, South China. Mar. Pollut. Bull. 2015, 101, 930–937. [Google Scholar] [CrossRef] [PubMed]
- Uauy, R.; Olivares, M.; Gonzalez, M. Essentiality of copper in humans. Am. J. Clin. Nutr. 1998, 67, 952S–959S. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Qu, K.; Xu, C.; Ren, J.; Qu, X. Visual and quantitative detection of copper ions using magnetic silica nanoparticles clicked on multiwalled carbon nanotubes. Chem. Commun. 2010, 46, 6572–6574. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Huang, X.; Kou, E.; Cai, W.; Zhang, H.; Zhang, X.; Liu, Y.; Li, W.; Zheng, Y.; Lei, B. Carbon dot based sensing platform for real-time imaging Cu2+ distribution in plants and environment. Biosens. Bioelectron. 2023, 219, 114848. [Google Scholar] [CrossRef] [PubMed]
- Arduino Due Web-Page. Available online: https://store.arduino.cc/products/arduino-due (accessed on 10 September 2024).
- Yao, Z.; Pan, J.; Yu, C.; Yuan, Z.; Chen, Q.; Sui, X. A Universal Digital Lock-in Amplifier Design for Calibrating the Photo-Detector Responses with Standard Black-Bodies. Sensors 2023, 23, 8902. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Suganuma, Y.; Dhirani, A.A. Low-cost, high-performance lock-in amplifier for pedagogical and practical applications. J. Chem. Educ. 2020, 97, 1167–1171. [Google Scholar] [CrossRef]
- Qu, S.N.; Zhou, D.; Li, D.; Ji, W.Y.; Jing, P.T.; Han, D.; Liu, L.; Zeng, H.B.; Shen, D.Z. Toward efficient orange emissive carbon nanodots through conjugated sp (2)-domain controlling and surface charges engineering. Adv. Mater. 2016, 28, 3516–3521. [Google Scholar] [CrossRef] [PubMed]
- Pizzoferrato, R.; Bisauriya, R.; Antonaroli, S.; Cabibbo, M.; Moro, A.J. Colorimetric and fluorescent sensing of copper ions in water through o-phenylenediamine-derived carbon dots. Sensors 2023, 23, 3029. [Google Scholar] [CrossRef] [PubMed]
- Fiorani, L.; Ciceroni, C.; Giardina, I.; Pollastrone, F. Rapid Non-Contact Detection of Chemical Warfare Agents by Laser Photoacoustic Spectroscopy. Sensors 2024, 24, 201. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pollastrone, F.; Fiorani, L.; Bisauriya, R.; Menicucci, I.; Ciceroni, C.; Pizzoferrato, R. Development and Test of Low-Cost Multi-Channel Multi-Frequency Lock-In Amplifier for Health and Environment Sensing. Sensors 2024, 24, 6020. https://doi.org/10.3390/s24186020
Pollastrone F, Fiorani L, Bisauriya R, Menicucci I, Ciceroni C, Pizzoferrato R. Development and Test of Low-Cost Multi-Channel Multi-Frequency Lock-In Amplifier for Health and Environment Sensing. Sensors. 2024; 24(18):6020. https://doi.org/10.3390/s24186020
Chicago/Turabian StylePollastrone, Fabio, Luca Fiorani, Ramanand Bisauriya, Ivano Menicucci, Claudio Ciceroni, and Roberto Pizzoferrato. 2024. "Development and Test of Low-Cost Multi-Channel Multi-Frequency Lock-In Amplifier for Health and Environment Sensing" Sensors 24, no. 18: 6020. https://doi.org/10.3390/s24186020
APA StylePollastrone, F., Fiorani, L., Bisauriya, R., Menicucci, I., Ciceroni, C., & Pizzoferrato, R. (2024). Development and Test of Low-Cost Multi-Channel Multi-Frequency Lock-In Amplifier for Health and Environment Sensing. Sensors, 24(18), 6020. https://doi.org/10.3390/s24186020