Improved MobileNet V3-Based Identification Method for Road Adhesion Coefficient
Abstract
:1. Introduction
- (1)
- This paper presents an estimation of road adhesion coefficients using a variety of methods. It also provides a detailed account of the well-known work on the estimation of road adhesion coefficients based on image information.
- (2)
- This paper replaces the original SE module with the CBAM. The CBAM not only includes channel attention but also adds spatial attention to optimize the network from both channel and spatial aspects. In this way, the network can be characterized more efficiently from both channel and spatial perspectives.
- (3)
- In this paper, the original cross-entropy loss function in the model is substituted with the Bias Loss function to mitigate the issue of random predictions arising from the optimization process.
- (4)
- The improved model is applied to a four-wheel-drive ROS robot for verification of the model’s validity.
2. Materials and Methods
2.1. Model Selection
2.2. Improvement of the MobileNet V3 Model
3. Results
3.1. Experimental Preparation
3.2. Dataset
3.3. Comparison of MobileNet V3 Performance with Other Models
3.4. Analysis of Results before and after Model Improvement
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Hu, J.; Wang, F.A.; Dong, H.; Yan, Y.; Ren, Y.; Zhou, C.; Yin, G. Tire road friction coefficient estimation: Review and research perspectives. Chin. J. Mech. Eng. 2022, 35, 6. [Google Scholar] [CrossRef]
- Novikov, I.; Lazarev, D. Experimental installation for calculation of road adhesion coefficient of locked car wheel. Transp. Res. Procedia 2017, 20, 463–467. [Google Scholar] [CrossRef]
- Qi, G.; Fan, X.; Li, H. A comparative study of the unscented Kalman filter and particle filter estimation methods for the measurement of the road adhesion coefficient. Mech. Sci. 2022, 13, 735–749. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Z.; Zhang, Z.; Liu, J.; Li, W.; Wu, Y.; Li, X.; Yu, H.; Cao, D. Integrated post-impact planning and active safety control for autonomous vehicles. IEEE Trans. Intell. Veh. 2023, 8, 2062–2076. [Google Scholar] [CrossRef]
- Wang, S.; Liang, Q.; Liu, Z.; Zhang, J. Research on collision avoidance control of intelligent vehicles based on MSTUKF road adhesion coefficient identification. Adv. Transp. Stud. 2022, 58, 245–260. [Google Scholar]
- Zhang, L.; Guo, P.; Wang, Z.; Ding, X. An enabling tire-road friction estimation method for four-in-wheel-motor-drive electric vehicles. IEEE Trans. Transp. Electrif. 2022, 9, 3697–3710. [Google Scholar] [CrossRef]
- Krakhmalev, O.; Krakhmalev, N.; Gataullin, S.; Makarenko, I.; Nikitin, P.; Serdechnyy, D.; Liang, K.; Korchagin, S. Mathematics model for 6-DOF joints manipulation robots. Mathematics 2021, 9, 2828. [Google Scholar] [CrossRef]
- Lu, X.; Shi, Q.; Li, Y.; Xu, K.; Tan, G. Road adhesion coefficient identification method based on vehicle dynamics model and multi-algorithm fusion. SAE Int. J. Adv. Curr. Pract. Mobil. 2022, 5, 731–747. [Google Scholar] [CrossRef]
- Pugi, L.; Favilli, T.; Berzi, L.; Locorotondo, E.; Pierini, M. Brake blending and torque vectoring of road electric vehicles: A flexible approach based on smart torque allocation. Int. J. Electr. Hybrid. Veh. 2020, 12, 87–115. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.; Yu, J.; Wu, M.; Li, N. Road Adhesion Coefficient Estimation Based on Second-Order Linear Extended State Observer. Math. Probl. Eng. 2023, 2023, 5953102. [Google Scholar] [CrossRef]
- Wu, Y.; Li, G.; Fan, D. Joint estimation of driving state and road adhesion coefficient for distributed drive electric vehicle. IEEE Access 2021, 9, 75460–75469. [Google Scholar] [CrossRef]
- Zhang, C.; Sun, J.; He, J.; Liu, L. Online estimation of the adhesion coefficient and its derivative based on the cascading SMC observer. J. Sens. 2017, 2017, 8419295. [Google Scholar] [CrossRef]
- Chen, X.; Li, S.; Li, L.; Zhao, W.; Cheng, S. Longitudinal-lateral-cooperative estimation algorithm for vehicle dynamics states based on adaptive-square-root-cubature-Kalman-filter and similarity-principle. Mech. Syst. Signal Process. 2022, 176, 109162. [Google Scholar] [CrossRef]
- Chen, Z.; Duan, Y.; Wu, J.; Zhang, Y. On-Board Estimation of Road Adhesion Coefficient Based on ANFIS and UKF; 0148-7191; SAE Technical Paper; SAE Publications: Warrendale, PA, USA, 2022. [Google Scholar]
- Li, G.; Fan, D.-S.; Wang, Y.; Xie, R.-C. Study on vehicle driving state and parameters estimation based on triple cubature Kalman filter. Int. J. Heavy Veh. Syst. 2020, 27, 126–144. [Google Scholar] [CrossRef]
- Sun, Y.A.; Xiong, L.; Yu, Z.P.; Feng, Y.; Ren, L.J. Road adhesion coefficient estimation. Appl. Mech. Mater. 2011, 52, 1503–1508. [Google Scholar] [CrossRef]
- Wang, Y.; Yin, G.; Dong, H. A novel approach for tire-road friction coefficient estimation using adaptive cubature kalman filter. In Proceedings of the 2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI), Hangzhou, China, 18–20 December 2020; pp. 30–34. [Google Scholar]
- Hsu, C.-H.; Ni, S.-P.; Hsiao, T. Look-up table-based tire-road friction coefficient estimation of each driving wheel. IEEE Control Syst. Lett. 2021, 6, 2168–2173. [Google Scholar] [CrossRef]
- Lin, X.; Wang, J.; Xu, Q.; Shi, G.; Jin, Y. Real-Time Estimation of Tire-Road Friction Coefficient Based on Unscented Kalman Filtering. In Proceedings of the 2020 IEEE 5th International Conference on Intelligent Transportation Engineering (ICITE), Beijing, China, 11–13 September 2020; pp. 376–382. [Google Scholar]
- Zhang, S.; Zhu, H.; Zhou, H.; Chen, Y.; Liu, Y. Estimation of Road Adhesion Coefficient Based on Camber Brush Model. World Electr. Veh. J. 2024, 15, 263. [Google Scholar] [CrossRef]
- Liang, H.; Pagano, R.G.; Oddone, S.; Cong, L.; De Blasiis, M.R. Analysis of Road Surface Texture for Asphalt Pavement Adhesion Assessment Using 3D Laser Technology. Remote Sens. 2024, 16, 1943. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.F.; Qu, T. Research on road adhesion coefficient estimation for electric vehicle under tire cornering condition. Appl. Mech. Mater. 2013, 427, 275–279. [Google Scholar] [CrossRef]
- Leng, B.; Tian, C.; Hou, X.; Xiong, L.; Zhao, W.; Yu, Z. Tire-road peak adhesion coefficient estimation based on multisource information assessment. IEEE Trans. Intell. Veh. 2023, 8, 3854–3870. [Google Scholar] [CrossRef]
- Liu, R.; Wei, M.; Sang, N.; Wei, J. Research on Curved Path Tracking Control for Four-Wheel Steering Vehicle considering Road Adhesion Coefficient. Math. Probl. Eng. 2020, 2020, 3108589. [Google Scholar] [CrossRef]
- Qi, G.; Fan, X.; Li, H. A comparative study of the recursive least squares and fuzzy logic estimation methods for the measurement of road adhesion coefficient. Aust. J. Mech. Eng. 2023, 21, 1230–1246. [Google Scholar] [CrossRef]
- Matilainen, M.J.; Tuononen, A.J. Tire friction potential estimation from measured tie rod forces. In Proceedings of the 2011 IEEE Intelligent Vehicles Symposium (IV), Baden, Germany, 5–9 June 2011; pp. 320–325. [Google Scholar]
- Erdogan, G.; Alexander, L.; Rajamani, R. Estimation of tire-road friction coefficient using a novel wireless piezoelectric tire sensor. IEEE Sens. J. 2010, 11, 267–279. [Google Scholar] [CrossRef]
- Zou, Z.; Zhang, X.; Zou, Y.; Lenzo, B. Tire-road friction coefficient estimation method design for intelligent tires equipped with three-axis accelerometer. SAE Int. J. Veh. Dyn. Stab. NVH 2021, 5, 249–258. [Google Scholar] [CrossRef]
- Roychowdhury, S.; Zhao, M.; Wallin, A.; Ohlsson, N.; Jonasson, M. Machine learning models for road surface and friction estimation using front-camera images. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8. [Google Scholar]
- Liang, H.; Zhang, H.; Sun, Z. A comparative study of vision-based road surface classification methods for dataset from different cities. In Proceedings of the 2022 IEEE 5th International Conference on Industrial Cyber-Physical Systems (ICPS), Warwick, UK, 24–26 May 2022; pp. 1–6. [Google Scholar]
- Nolte, M.; Kister, N.; Maurer, M. Assessment of deep convolutional neural networks for road surface classification. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 381–386. [Google Scholar]
- Pan, G.; Fu, L.; Yu, R.; Muresan, M. Winter road surface condition recognition using a pretrained deep convolutional network. arXiv 2018, arXiv:1812.06858. [Google Scholar]
- Pan, G.; Muresan, M.; Yu, R.; Fu, L. Real-time winter road surface condition monitoring using an improved residual CNN. Can. J. Civ. Eng. 2021, 48, 1215–1222. [Google Scholar] [CrossRef]
- Dewangan, D.K.; Sahu, S.P. RCNet: Road classification convolutional neural networks for intelligent vehicle system. Intell. Serv. Robot. 2021, 14, 199–214. [Google Scholar] [CrossRef]
- Šabanovič, E.; Žuraulis, V.; Prentkovskis, O.; Skrickij, V. Identification of road-surface type using deep neural networks for friction coefficient estimation. Sensors 2020, 20, 612. [Google Scholar] [CrossRef]
- Tumen, V.; Yildirim, O.; Ergen, B. Recognition of Road Type and Quality for Advanced Driver Assistance Systems with Deep Learning. Elektron. Ir. Elektrotechnika 2018, 24, 67–74. [Google Scholar] [CrossRef]
- Hnoohom, N.; Mekruksavanich, S.; Jitpattanakul, A. A Comprehensive Evaluation of State-of-the-Art Deep Learning Models for Road Surface Type Classification. Intell. Autom. Soft Comput. 2023, 37, 1275–1291. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 84–90. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 1–26 July 2016; pp. 770–778. [Google Scholar]
- Ma, N.; Zhang, X.; Zheng, H.-T.; Sun, J. Shufflenet v2: Practical guidelines for efficient cnn architecture design. In Proceedings of the European conference on computer vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 116–131. [Google Scholar]
- Howard, A.; Sandler, M.; Chu, G.; Chen, L.-C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V. Searching for mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1314–1324. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Abrahamyan, L.; Ziatchin, V.; Chen, Y.; Deligiannis, N. Bias loss for mobile neural networks. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 6556–6566. [Google Scholar]
- Zhao, T.; He, J.; Lv, J.; Min, D.; Wei, Y. A comprehensive implementation of road surface classification for vehicle driving assistance: Dataset, models, and deployment. IEEE Trans. Intell. Transp. Syst. 2023, 24, 8361–8370. [Google Scholar] [CrossRef]
- GA/T643-2006; The Speed Technical Evaluation for Vehicles Involved in Rep-Representative Road Accidents. Standards Press of China: Beijing, China, 2006.
Operator | Input Channel | Size | SE Module | NL | Step |
---|---|---|---|---|---|
ConvBNA, 3 × 3 | 3 | 224 × 224 | - | HS | 2 |
InvertedResidual, 3 × 3 | 16 | 112 × 112 | - | RE | 1 |
InvertedResidual, 3 × 3 | 16 | 112 × 112 | - | RE | 2 |
InvertedResidual, 3 × 3 | 24 | 56 × 56 | - | RE | 1 |
InvertedResidual, 5 × 5 | 24 | 56 × 56 | √ | RE | 2 |
InvertedResidual, 5 × 5 | 40 | 28 × 28 | √ | RE | 1 |
InvertedResidual, 5 × 5 | 40 | 28 × 28 | √ | RE | 1 |
InvertedResidual, 3 × 3 | 40 | 28 × 28 | - | HS | 2 |
InvertedResidual, 3 × 3 | 80 | 14 × 14 | - | HS | 1 |
InvertedResidual, 3 × 3 | 80 | 14 × 14 | - | HS | 1 |
InvertedResidual, 3 × 3 | 80 | 14 × 14 | - | HS | 1 |
InvertedResidual, 3 × 3 | 80 | 14 × 14 | √ | HS | 1 |
InvertedResidual, 3 × 3 | 112 | 14 × 14 | √ | HS | 1 |
InvertedResidual, 5 × 5 | 112 | 14 × 14 | √ | HS | 2 |
InvertedResidual, 5 × 5 | 160 | 7 × 7 | √ | HS | 1 |
InvertedResidual, 5 × 5 | 160 | 7 × 7 | √ | HS | 1 |
Conv2d, 1 × 1 | 160 | 7 × 7 | - | HS | 1 |
Avg Pooling, 7 × 7 | 960 | 7 × 7 | - | - | 1 |
Conv2d, 1 × 1, NBN | 960 | 1 × 1 | - | HS | 1 |
Conv2d, 1 × 1, NBN | 1280 | 1 × 1 | - | - | 1 |
Dry- Asphalt-Smooth | Dry- Gravel | Fresh- Snow | Water- Concrete-Smooth | |
---|---|---|---|---|
Road adhesion coefficient | 0.75 | 0.60 | 0.55 | 0.25 |
Precision (%) | Recall (%) | F1 Score (%) | Model Size (M) | |
---|---|---|---|---|
ResNet 50 | 94.13 | 93.75 | 93.94 | 25.24 |
VGG 16 | 93.65 | 93.14 | 93.40 | 138.18 |
AlexNet | 90.83 | 90.25 | 90.54 | 16.68 |
MobileNet V3 | 92.40 | 92.00 | 92.20 | 5.48 |
ShuffleNet V2 | 88.50 | 87.50 | 87.99 | 7.16 |
Model Size (M) | Road Type | Precision (%) | Recall (%) | F1 Score (%) | |
---|---|---|---|---|---|
MobileNet V3 | 5.48 | dry-asphalt-smooth | 94.80 | 91.00 | 92.86 |
dry-gravel | 92.80 | 90.00 | 91.38 | ||
fresh-snow | 97.90 | 92.00 | 94.86 | ||
water-concrete-smooth | 84.10 | 95.00 | 89.22 | ||
average | 92.40 | 92.00 | 92.20 | ||
MobileNet V3–CBAM | 5.69 | dry-asphalt-smooth | 96.90 | 94.00 | 95.43 |
dry-gravel | 94.10 | 95.00 | 94.55 | ||
fresh-snow | 100.0 | 91.00 | 95.29 | ||
water-concrete-smooth | 87.40 | 97.00 | 91.95 | ||
average | 94.60 | 94.25 | 94.42 | ||
MobileNet V3–CBAM-Bias | 5.69 | dry-asphalt-smooth | 98.90 | 94.00 | 96.39 |
dry-gravel | 94.90 | 97.90 | 96.38 | ||
fresh-snow | 100.0 | 91.00 | 95.29 | ||
water-concrete-smooth | 88.30 | 98.00 | 92.89 | ||
average | 95.53 | 95.23 | 95.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Xu, J.; Lian, Y.; Sun, F.; Zhou, J.; Luo, J. Improved MobileNet V3-Based Identification Method for Road Adhesion Coefficient. Sensors 2024, 24, 5613. https://doi.org/10.3390/s24175613
Li B, Xu J, Lian Y, Sun F, Zhou J, Luo J. Improved MobileNet V3-Based Identification Method for Road Adhesion Coefficient. Sensors. 2024; 24(17):5613. https://doi.org/10.3390/s24175613
Chicago/Turabian StyleLi, Binglin, Jianqiang Xu, Yufeng Lian, Fengyu Sun, Jincheng Zhou, and Jun Luo. 2024. "Improved MobileNet V3-Based Identification Method for Road Adhesion Coefficient" Sensors 24, no. 17: 5613. https://doi.org/10.3390/s24175613