Enhancing the Longevity and Structural Stability of Humidity Sensors: Iron Thin Films with Nitride Bonding Synthesized via Magnetic Field-Assisted Sparking Discharge
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Saqib, M.; Ali Khan, S.; Mutee Ur Rehman, H.M.; Yang, Y.; Kim, S.; Rehman, M.M.; Young Kim, W. High-Performance Humidity Sensor Based on the Graphene Flower/Zinc Oxide Composite. Nanomaterials 2021, 11, 242. [Google Scholar] [CrossRef]
- Hashtroudi, H.; Yu, A.; Juodkazis, S.; Shafiei, M. Two-Dimensional Dy2O3-Pd-PDA/rGO Heterojunction Nanocomposite: Synergistic Effects of Hybridisation, UV Illumination and Relative Humidity on Hydrogen Gas Sensing. Chemosensors 2022, 10, 78. [Google Scholar] [CrossRef]
- García-García, A.; Toral, V.; Quílez del Moral, J.F.; Galisteo Pretel, A.; Morales, D.P.; Salinas-Castillo, A.; Cepeda, J.; Choquesillo-Lazarte, D.; Bobinger, M.; Salmerón, J.F.; et al. Selectivity of Relative Humidity Using a CP Based on S-Block Metal Ions. Sensors 2022, 22, 1664. [Google Scholar] [CrossRef]
- Silva, G.M.G.; Leão, V.N.S.; Pereira, M.F.G.; Faia, P.M.; Araújo, E.S. Zn2+-Doped TiO2:WO3 Films Prepared by Electrospinning and Sintering: Microstructural Characterization and Electrical Signature to Moisture Sensing. Ceramics 2021, 4, 576–591. [Google Scholar] [CrossRef]
- Afify, A.S.; Dadkhah, M.; Tulliani, J.-M. Sol–Gel Synthesis of Iron-Doped Sepiolite as a Novel Humidity-Sensing Material. Ceramics 2022, 5, 575–592. [Google Scholar] [CrossRef]
- Kumpika, T.; Ručman, S.; Polin, S.; Kantarak, E.; Sroila, W.; Thongsuwan, W.; Panthawan, A.; Sanmuangmoon, P.; Jhuntama, N.; Singjai, P. Studies on the Characteristics of Nanostructures Produced by Sparking Discharge Process in the Ambient Atmosphere for Air Filtration Application. Crystals 2021, 11, 140. [Google Scholar] [CrossRef]
- Rucman, S.; Jakmunee, J.; Punyodom, W.; Singjai, P. A Novel Strategy for Longevity Prolongation of Iron-Based Nanoparticle Thin Films by Applied Magnetic Force. New J. Chem. 2018, 42, 4807–4810. [Google Scholar] [CrossRef]
- Tippo, P.; Singjai, P.; Sroila, W.; Jaisamer, T.; Suttanon, N.; Panthawan, A.; Kantarak, E.; Sroila, W.; Thongsuwan, W.; Kumpika, T.; et al. Improving the Properties of Fe2O3 by a Sparking Method under a Uniform Magnetic Field for a High-Performance Humidity Sensor. RSC Adv. 2022, 12, 1527–1533. [Google Scholar] [CrossRef] [PubMed]
- Ren, B.H.; Chu, C.Y.; Jhang, B.S. Magnetic Field-Induced Order–Order Transition from Hexagonally Packed Cylinders to Lamellae with Large-Scale Orientations in a Block Copolymer/Magnetic Nanoparticle Nanocomposite Film. Macromolecules 2023, 56, 3363–3373. [Google Scholar] [CrossRef]
- Ručman, S.; Thongpan, W.; Sroila, W.; Jhuntama, N.; Singjai, P. Magnetic Field Assisted Spark Discharge-Generated Gold Nanostructures: XPS Study of Nitrogen Gas Fate and Chemical Composition of Gold Thin Films. Magnetochemistry 2022, 8, 178. [Google Scholar] [CrossRef]
- Hameed, Z.A.; Mutlak, F.A.-H. Two-Step Laser Ablation in Liquid-Assisted Magnetic Fields for Synthesis Au:Pb Core/Shell NPS in Developing High-Performance Silicon-Based Heterojunction Photodetector. Plasmonics 2023, 19, 457–469. [Google Scholar] [CrossRef]
- Jwar, A.J.; Nayef, U.M.; Mutlak, F.A.-H. Study Effect of Magnetic Field on Au-TiO2 Core–Shell Nanoparticles via Laser Ablation Deposited on Porous Silicon for Photodetector. Plasmonics 2023, 18, 595–605. [Google Scholar] [CrossRef]
- Jwied, D.H.; Nayef, U.M.; Mutlak, F.A.-H. Synthesis of C:Se Nanoparticles via Laser Ablated with Magnetic Field on Porous Silicon for Gas Sensor Applications. Optik 2021, 242, 167207. [Google Scholar] [CrossRef]
- Ručman, S.; Intra, P.; Kantarak, E.; Sroila, W.; Kumpika, T.; Jakmunee, J.; Punyodom, W.; Arsić, B.; Singjai, P. Influence of the Magnetic Field on Bandgap and Chemical Composition of Zinc Thin Films Prepared by Sparking Discharge Process. Sci. Rep. 2020, 10, 1388. [Google Scholar] [CrossRef]
- Albrecht, S.; Bakker, E.J.; de Jong, J.A.; Tubbs, R.N.; Meisner, J.A.; Le Poole, R.S. Calibration of temperature and relative humidity sensors for use on the VLT-Interferometer. In New Frontiers in Stellar Interferometry; SPIE: Bellingham, WA, USA, 2004; Volume 5491, pp. 1266–1273. [Google Scholar]
- Arabhosseini, A.; Huisman, W.; van Boxtel, A.; Müller, J. Modeling of the Equilibrium Moisture Content (EMC) of Tarragon Artemisia dracunculus L. Int. J. Food Eng. 2005, 1. [Google Scholar] [CrossRef]
- Ručman, S.; Boonruang, C.; Singjai, P. The Effect of a Weak Magnetic Field (0 T to 0.4 T) on the Valence Band and Intramolecular Hydrogen of Inorganic Aerosol Metal–Nitrogen Gas Chemical Reactions in a Sparking Discharge Process. Crystals 2020, 10, 1141. [Google Scholar] [CrossRef]
- Yamashita, T.; Hayes, P. Analysis of XPS Spectra of Fe2+ and Fe3+ Ions in Oxide Materials. Appl. Surf. Sci. 2008, 254, 2441–2449. [Google Scholar] [CrossRef]
- Kumar, R.; Varma, G.D. Study of Structural and Magnetotransport Properties of Fe(Te, SE) Single Crystals. Phys. Status Solidi B 2019, 257, 1900552. [Google Scholar] [CrossRef]
- Idczak, K.; Idczak, R.; Konieczny, R. An Investigation of the Corrosion of Polycrystalline Iron by XPS, TMS and CEMS. Phys. B Condens. Matter 2016, 491, 37–45. [Google Scholar] [CrossRef]
- López, D.A.; Schreiner, W.H.; de Sánchez, S.R.; Simison, S.N. The Influence of Carbon Steel Microstructure on Corrosion Layers. Appl. Surf. Sci. 2003, 207, 69–85. [Google Scholar] [CrossRef]
- de Alwis, C.; Trought, M.; Crumlin, E.J.; Nemsak, S.; Perrine, K.A. Probing the Initial Stages of Iron Surface Corrosion: Effect of O2 and H2O on Surface Carbonation. Appl. Surf. Sci. 2023, 612, 155596. [Google Scholar] [CrossRef]
- Takiguchi, K.; Miura, K.; Ohtsu, N. XPS Study of a Laser-nitrided Iron Surface Using a Focused Pulsed Nd:YAG Laser under Various Conditions. Surf. Interface Anal. 2020, 52, 919–923. [Google Scholar] [CrossRef]
- Wojciechowski, P.; Lewandowski, M. Iron Nitride Thin Films: Growth, Structure, and Properties. Cryst. Growth Amp; Des. 2022, 22, 4618–4639. [Google Scholar] [CrossRef] [PubMed]
- Fraoua, K.; Aeiyach, S.; Aubard, J.; Delamar, M.; Lacaze, P.C.; Ferreira, C.A. XPS and SERS Evidence for Iron Nitride Species Responsible for the Strong Adhesion of Polypyrrole to Iron or Steel Treated with Nitric Acid. J. Adhes. Sci. Technol. 1999, 13, 517–522. [Google Scholar] [CrossRef]
- Prieto, P.; Marco, J.F.; Sanz, J.M. Synthesis and Characterization of Iron Nitrides. an XRD, Mössbauer, RBS and XPS Characterization. Surf. Interface Anal. 2008, 40, 781–785. [Google Scholar] [CrossRef]
- Gontijo, L.C.; Machado, R.; Miola, E.J.; Casteletti, L.C.; Nascente, P.A.P. Characterization of Plasma-Nitrided Iron by XRD, SEM and XPS. Surf. Coat. Technol. 2004, 183, 10–17. [Google Scholar] [CrossRef]
- Idriss, H. On the Wrong Assignment of the XPS O1s Signal at 531–532 EV Attributed to Oxygen Vacancies in Photo- and Electro-Catalysts for Water Splitting and Other Materials Applications. Surf. Sci. 2021, 712, 121894. [Google Scholar] [CrossRef]
- Schiros, T.; Andersson, K.J.; Pettersson, L.G.M.; Nilsson, A.; Ogasawara, H. Chemical Bonding of Water to Metal Surfaces Studied with Core-Level Spectroscopies. J. Electron Spectrosc. Relat. Phenom. 2010, 177, 85–98. [Google Scholar] [CrossRef]
- Smith, M.; Scudiero, L.; Espinal, J.; McEwen, J.-S.; Garcia-Perez, M. Improving the Deconvolution and Interpretation of XPS Spectra from Chars by Ab Initio Calculations. Carbon 2016, 110, 155–171. [Google Scholar] [CrossRef]
- Beniwal, A.; Ganguly, P.; Aliyana, A.K.; Khandelwal, G.; Dahiya, R. Screen-Printed Graphene-Carbon Ink Based Disposable Humidity Sensor with Wireless Communication. Sens. Actuators B Chem. 2023, 374, 132731. [Google Scholar] [CrossRef]
- Zeng, S.; Pan, Q.; Huang, Z.; Gu, C.; Wang, T.; Xu, J.; Yan, Z.; Zhao, F.; Li, P.; Tu, Y.; et al. Ultrafast Response of Self-Powered Humidity Sensor of Flexible Graphene Oxide Film. Mater. Amp. Des. 2023, 226, 111683. [Google Scholar] [CrossRef]
- Guo, P.; Tian, B.; Liang, J.; Yang, X.; Tang, G.; Li, Q.; Liu, Q.; Zheng, K.; Chen, X.; Wu, W. An All-printed, Fast-response Flexible Humidity Sensor Based on Hexagonal-WO3 Nanowires for Multifunctional Applications. Adv. Mater. 2023, 35, 2304420. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Jiang, Y.; Yuan, L.; Yuan, Z.; Zhang, B.; Liu, B.; Zhang, M.; Huang, Q.; Duan, Z.; Tai, H. Hydrophilic Hyaluronic Acid-Induced Crumpling of NB2CT Nanosheets: Enabling Fast Humidity Sensing Based on Primary Battery. Sens. Actuators B Chem. 2023, 392, 134082. [Google Scholar] [CrossRef]
- Chaloeipote, G.; Samarnwong, J.; Traiwatcharanon, P.; Kerdcharoen, T.; Wongchoosuk, C. High-Performance Resistive Humidity Sensor Based on Ag Nanoparticles Decorated with Graphene Quantum Dots. R. Soc. Open Sci. 2021, 8, 210407. [Google Scholar] [CrossRef]
Substrate | C 1s | N 1s | O 1s | Fe 2p3/2 |
---|---|---|---|---|
BE (eV) | BE (eV) | BE (eV) | BE (eV) | |
Iron wires sparked under pure nitrogen atmosphere without magnetic field; aged for more than 120 days | 284.861 (51.7%) 285.824 (22.2%) 286.995 (9.4%) 288.374 (16.8%) | 396.145 (22.0%) 397.302 (9.6%) 398.839 (14.8%) 399.896 (21.2%) 402.077 (23.1%) 403.234 (9.3%) | 529.839 (27.1%) 531.160 (21.8%) 532.029 (11.8%) 533.133 (30.0%) 534.526 (5.45%) 535.938 (3.9%) | 709.787 (18.4%) 710.920 (26%) 712.336 (20.7%) |
Iron sparked under nitrogen atmosphere under magnetic field of 0.2 T; aged for more than 120 days | 284.943 (69.2%) 285.964 (11.8%) 286.908 (8.2%) 288.570 (10.8%) | 396.322 (26.8%) 399.947 (31.0%) 402.275 (27.3%) 403.588 (14.9%) | 530.012 (19.3%) 531.432 (19.4%) 532.762 (57.6%) 534.291 (3.7%) | 710.119 (21.4%) 711.318 (25.7%) 712.734 (18.4%) |
Iron sparked under nitrogen atmosphere with magnetic field and treatment with nitrite/nitrate 1% solution; aged for 120 days | 284.898 (64.5%) 285.974 (16.5%) 287.032 (7.5%) 288.410 (11.5%) | 399.896 (19.8%) 403.421 (17.0%) 407.079 (63.1%) | 529.475 (11.8%) 530.841 (19.0%) 531.824 (26.2%) 532.644 (35.8%) 534.028 (4.5%) 535.776 (2.7%) | 709.706 (22.2%) 710.936 (25.1%) 712.298 (17.5%) |
Iron sparked under ambient oxygen atmosphere in the presence of magnetic field; aged for 120 days | 284.937 (67.4%) 286.202 (14.6%) 287.033 (6.2%) 288.695 (11.9%) | 400.097 (20.6%) 407.163 (79.4%) | 530.129 (28.5%) 531.595 (35.3%) 532.807 (36.2%) | 710.319 (20.1%) 711.329 (25.0%) 712.556 (19.3%) |
Iron wires sparked in pure nitrogen atmosphere without magnetic field, treated with nitrite/nitrate 1% solution; aged for more than 120 days | 285.007 (71.1%) 286.329 (12.4%) 287.367 (4.4%) 288.595 (12.2%) | 396.458 (23.5%) 399.763 (36.7%) 402.588 (21.1%) 406.983 (18.7%) | 530.029 (36.4%) 531.477 (38.6%) 532.906 (25.0%) | 709.970 (21.2%) 711.071 (25.2%) 712.330 (18.6%) |
Iron wire sparked under ambient oxygen atmosphere without magnetic field; aged for more than 120 days | 285.037 (72.5%) 286.396 (14.9%) 287.397 (3.8%) 288.813 (8.8%) | 400.211 (25.2%) 402.193 (14.0%) 407.101 (60.8%) | 530.239 (18.2%) 531.714 (21.1%) 533.007 (58.1%) 534.427 (2.6%) | 710.422 (22.2%) 711.586 (25.4%) 712.971 (17.8%) |
Freshly prepared iron sparked under pure nitrogen atmosphere under magnetic field | 284.975 (65.3%) 286.089 (20.7%) 287.033 (4.6%) 288.619 (9.4%) | 396.245 (26.2%) 397.236 (11.3%) 399.186 (12.6%) 400.326 (8.9%) 402.325 (17.4%) 403.399 (10.4%) 406.868 (13.2%) | 529.920 (46.0%) 531.341 (30.2%) 532.561 (14.6%) 533.435 (9.3%) | 708.528 (3.4%) 710.164 (24.9%) 711.392 (21.6%) 712.682 (13.9%) |
Freshly prepared iron sparked under ambient oxygen atmosphere under magnetic field | 285.056 (64.9%) 286.264 (21.0%) 287.341 (3.5%) 288.681 (10.6%) | 399.913 (27.2%) 406.935 (72.8%) | 530.075 (31.2%) 531.240 (16.2%) 531.896 (13.9%) 533.025 (36.9%) 534.464 (1.8%) | 710.138 (20.2%) 711.177 (26.1%) 712.530 (20.0%) |
Method | Material | Response Time (s) | Recovery Time (s) | Reference |
---|---|---|---|---|
sparking discharge | iron-based nanoparticles | 0.8 | 2.85 | This work |
screen-printing method | graphene–carbon (G-C) ink | 4 | 6 | [31] |
drop-casting method | GO film | 0.3 | 0.3 | [32] |
screen-printing method | hexagonal-WO3 nanowires | 1.5 | [33] | |
electrostatic flocculation | hyaluronic acid (HA)-induced crumpling of Nb2CTx nanosheet | 15.1 | 3.4 | [34] |
Hydrothermal method and green reducing agent route | graphene quantum dots (GQDs) and silver nanoparticles (AgNPs) | 15 | 15 | [35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ručman, S.; Tippo, P.; Panthawan, A.; Jhuntama, N.; Jumrus, N.; Singjai, P. Enhancing the Longevity and Structural Stability of Humidity Sensors: Iron Thin Films with Nitride Bonding Synthesized via Magnetic Field-Assisted Sparking Discharge. Sensors 2024, 24, 5466. https://doi.org/10.3390/s24175466
Ručman S, Tippo P, Panthawan A, Jhuntama N, Jumrus N, Singjai P. Enhancing the Longevity and Structural Stability of Humidity Sensors: Iron Thin Films with Nitride Bonding Synthesized via Magnetic Field-Assisted Sparking Discharge. Sensors. 2024; 24(17):5466. https://doi.org/10.3390/s24175466
Chicago/Turabian StyleRučman, Stefan, Posak Tippo, Arisara Panthawan, Niwat Jhuntama, Nidchamon Jumrus, and Pisith Singjai. 2024. "Enhancing the Longevity and Structural Stability of Humidity Sensors: Iron Thin Films with Nitride Bonding Synthesized via Magnetic Field-Assisted Sparking Discharge" Sensors 24, no. 17: 5466. https://doi.org/10.3390/s24175466
APA StyleRučman, S., Tippo, P., Panthawan, A., Jhuntama, N., Jumrus, N., & Singjai, P. (2024). Enhancing the Longevity and Structural Stability of Humidity Sensors: Iron Thin Films with Nitride Bonding Synthesized via Magnetic Field-Assisted Sparking Discharge. Sensors, 24(17), 5466. https://doi.org/10.3390/s24175466