Advancing Non-Line-of-Sight Communication: A Comprehensive Review of State-of-the-Art Technologies and the Role of Energy Harvesting
Abstract
:1. Introduction
2. NOMA Emerged Technologies
2.1. C-NOMA
2.1.1. Dynamic Decode and Forward (DDF) NOMA
2.1.2. Dynamic Relay Selection (DRS)-Fixed Power Allocation (FPA) and DRS-Dynamic Power Allocation (DPA)
2.1.3. Cooperative Relay-Based FD NOMA (FD-NOMA-RS)
2.1.4. Two-Way Relay (TWR)-NOMA
2.2. MIMO-NOMA
2.2.1. Multi-Cluster MIMO-NOMA
2.2.2. Multi-Cell Multi-Cluster MIMO-NOMA
2.3. IRS-NOMA
2.3.1. Static and Dynamic IRS Configurations In the Context of Broadcast Channels (BCs)
2.3.2. IRS-Assistant Wireless Power Transfer
2.3.3. IRS-Aided Wireless Radar
2.3.4. IRS Operation Modes
2.4. UAV-Enabled NOMA
2.5. Energy Harvesting for Sustainable NOMA
2.5.1. Solar Energy Harvesting
2.5.2. Radio Frequency (RF) Energy Harvesting
2.5.3. Motion-Driven Energy Harvesting
2.5.4. Thermoelectric Energy Harvesting
2.5.5. Fluid Energy Harvesting
2.5.6. EH Challenges for NLoS
3. Current Challenges and Future Directions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, Y.; Liu, Y.; Jiang, C.; Zhong, X. Multiobjective anti-collision for massive access ranging in mf-tdma satellite communication system. IEEE Internet Things J. 2022, 9, 14655–14666. [Google Scholar] [CrossRef]
- Xu, Y.; Li, B.; Zhao, N.; Chen, Y.; Wang, G.; Ding, Z.; Wang, X. Coordinated direct and relay transmission with noma and network coding in nakagami-m fading channels. IEEE Trans. Commun. 2021, 69, 207–222. [Google Scholar] [CrossRef]
- Abd-Elnaby, M.; Sedhom, G.G.; El-Rabaie, E.-S.M.; Elwekeil, M. Correction to: Noma for 5G and beyond: Literature review and novel trends. Wirel. Netw. 2023, 29, 1655. [Google Scholar] [CrossRef]
- Akbar, A.; Jangsher, S.; Bhatti, F.A. Noma and 5G emerging technologies: A survey on issues and solution techniques. Comput. Netw. 2021, 190, 107950. Available online: https://www.sciencedirect.com/science/article/pii/S1389128621000888 (accessed on 12 July 2024). [CrossRef]
- Ghosh, J.; Ra, I.-H.; Singh, S.; Haci, H.; Alutaibi, K.; Sait, S. On the comparison of optimal noma and oma in a paradigm shift of emerging technologies. IEEE Access 2022, 10, 11616–11632. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, T.; Liu, Y.; Qiao, X. Physical layer security in noma-enabled cognitive radio networks with outdated channel state information. IEEE Access 2020, 8, 159480–159492. [Google Scholar] [CrossRef]
- Liu, H.; Ding, Z.; Kim, K.J.; Kwak, K.S.; Poor, H.V. Decode-and-forward relaying for cooperative noma systems with direct links. IEEE Trans. Wirel. Commun. 2018, 17, 8077–8093. [Google Scholar] [CrossRef]
- Rahman, T.; Khan, F.; Khan, I.; Ullah, N.; Althobaiti, M.; Alassery, F. Noma and oma-based massive mimo and clustering algorithms for beyond 5G iot networks. Wirel. Commun. Mob. Comput. 2021, 2021, 6522089. [Google Scholar] [CrossRef]
- Lin, Z.; Niu, H.; An, K.; Wang, Y.; Zheng, G.; Chatzinotas, S.; Hu, Y. Refracting ris-aided hybrid satellite-terrestrial relay networks: Joint beamforming design and optimization. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 3717–3724. [Google Scholar] [CrossRef]
- Moon, S.; Kim, H.; Hwang, I. Deep learning-based channel estimation and tracking for millimeter-wave vehicular communications. J. Commun. Netw. 2020, 22, 177–184. [Google Scholar] [CrossRef]
- Jana, S.; Misra, I.S. Exploration of different combination of antenna diversity techniques for mimo-pd-noma with experimental validation. In Proceedings of the 2023 IEEE Silchar Subsection Conference (SILCON), Cachar, India, 3–5 November 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Liu, Y.; Si, L.; Wang, Y.; Zhang, B.; Xu, W. Efficient precoding and power allocation techniques for maximizing spectral efficiency in beamspace mimo-noma systems. Sensors 2023, 23, 7996. [Google Scholar] [CrossRef] [PubMed]
- Mirbolouk, S.; Valizadeh, M.; Amirani, M.C.; Ali, S. Relay selection and power allocation for energy efficiency maximization in hybrid satellite-uav networks with comp-noma transmission. IEEE Trans. Veh. Technol. 2022, 71, 1. [Google Scholar] [CrossRef]
- Yuan, F.; Ye, N.; Li, X.; He, Y. Encoding and decoding algorithms of relay satellite wireless data transmission system. In Proceedings of the 2022 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), Dalian, China, 24–26 June 2022; pp. 223–227. [Google Scholar] [CrossRef]
- Nguyen, B.; Tran, X.N.; Tran, D.T. Performance analysis of full-duplex decode-and-forward two-way relay networks with transceiver impairments. Ann. Telecommun. 2022, 77, 187–200. [Google Scholar] [CrossRef]
- Bhuyan, U.; Rao, S. Performance analysis of three user cooperative noma. In Proceedings of the TENCON 2021—2021 IEEE Region 10 Conference (TENCON), Auckland, New Zealand, 7–10 December 2021; pp. 57–62. [Google Scholar] [CrossRef]
- Umakoglu, I.; Namdar, M.; Basgumus, A.; Kara, F.; Kaya, H.; Yanikomeroglu, H. Ber performance comparison of af and df assisted relay selection schemes in cooperative noma systems. In Proceedings of the 2021 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), Bucharest, Romania, 24–28 May 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, R.; Tian, L.; Dai, R.; Cao, Z.; Feng, J. Noma-based cooperative relaying transmission for the industrial internet of things. Comput. Mater. Contin. 2022, 73, 029467. [Google Scholar] [CrossRef]
- Yang, K.; Yan, X.; Wang, Q.; Wu, H.-C.; Qin, K. Spectral-efficiency optimization for noma-based amplify-and-forward cooperative relaying systems with beamforming and power allocation. Wirel. Netw. 2021, 27, 4123–4132. [Google Scholar] [CrossRef]
- Khan, S.K.; Al-Hourani, A.; Chavez, K.G. Performance evaluation of amplify-and-forward uav relay in millimeter-wave. In Proceedings of the 2020 27th International Conference on Telecommunications (ICT), Bali, Indonesia, 5–7 October 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Tahsin, M.; Yagnik, S.; Viswanathan, R.; Cao, L. Performance of a selective amplify-and-forward scheme for two-users with two-relays in rayleigh fading. In Proceedings of the SoutheastCon 2024, Atlanta, GA, USA, 15–22 March 2024; pp. 764–769. [Google Scholar] [CrossRef]
- Kara, F.; Kaya, H. Error analysis of decode-forward cooperative relaying noma schemes over nakagami-m fading channels. In Proceedings of the 2020 28th Signal Processing and Communications Applications Conference (SIU), Gaziantep, Turkey, 5–7 October 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Sachdeva, N.; Kumaravelu, V.B.; Selvaprabhu, P.; Sheeba, H.; Evangeline, C.S.; Imoize, A.L. Probability of error analysis of decode-and-forward cooperative relaying system with maximal ratio combining. In Proceedings of the 2023 2nd International Conference on Vision towards Emerging Trends in Communication and Networking Technologies (ViTECoN), Vellore, India, 5–6 May 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Singh, S.; Bansal, M. Outage analysis of uplink noma based fd decode-and-forward cooperative relay system. In Proceedings of the 2020 IEEE 4th Conference on Information & Communication Technology (CICT), Chennai, India, 3–5 December 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Haif, H.; Arous, A.; Arslan, H. A decentralized dynamic relaying-based framework for enhancing lora networks performance. IEEE Internet Things J. 2024, 11, 22183–22196. [Google Scholar] [CrossRef]
- Wu, C.; Wu, M.; Gao, Y.; Xiao, Y.; You, X. Dynamic relay access for d2d-aided low-latency and high-reliability communications. Sci. China Inf. Sci. 2021, 64, 120302. [Google Scholar] [CrossRef]
- Raziah, I.; Yunida, Y.; Away, Y.; Muharar, R.; Syafie, N. Adaptive relay selection based on channel gain and link distance for cooperative out-band device-to-device networks. Heliyon 2021, 7, e07430. [Google Scholar] [CrossRef]
- Arfaoui, M.A.; Ghrayeb, A.; Assi, C.; Qaraqe, M. Comp-assisted noma and cooperative noma in indoor vlc cellular systems. IEEE Trans. Commun. 2022, 70, 6020–6034. [Google Scholar] [CrossRef]
- Elhattab, M.; Arfaoui, M.A.; Assi, C. Power allocation in comp-empowered c-noma networks. IEEE Netw. Lett. 2021, 3, 10–14. [Google Scholar] [CrossRef]
- Xie, X.; Li, M.; Shi, Z.; Tang, H.; Huang, Q. User selection and dynamic power allocation in the swipt-noma relay system. EURASIP J. Wirel. Commun. Netw. 2021, 2021, 124. [Google Scholar] [CrossRef]
- Nguyen, T.-T.; Nguyen, S.Q.; Nguyen, P.X.; Kim, Y.-H. Evaluation of full-duplex swipt cooperative noma-based iot relay networks over nakagami-m fading channels. Sensors 2022, 22, 1974. [Google Scholar] [CrossRef] [PubMed]
- Aswathi, V.; Babu, A.V. Full/half duplex cooperative relaying noma network under power splitting based swipt: Performance analysis and optimization. Phys. Commun. 2021, 46, 101335. Available online: https://www.sciencedirect.com/science/article/pii/S1874490721000720 (accessed on 12 July 2024). [CrossRef]
- Ozdemir, O. Achievable rate analysis for two-way relay non-orthogonal multiple access systems. In Proceedings of the 2021 IEEE Asia Pacific Conference on Wireless and Mobile (APWiMob), Bandung, Indonesia, 6–8 April 2021; pp. 80–85. [Google Scholar] [CrossRef]
- Ghosh, S.; Acharya, T.; Maity, S.P. Outage analysis in swipt enabled cooperative af/df relay assisted two-way spectrum sharing communication. IEEE Trans. Cogn. Commun. Netw. 2022, 8, 1434–1443. [Google Scholar] [CrossRef]
- Guo, K.; Shuai, H.; Li, X.; Yang, L.; Tsiftsis, T.A.; Nallanathan, A.; Wu, M. Two-way satellite-hap-terrestrial networks with non-orthogonal multiple access. IEEE Trans. Veh. Technol. 2024, 73, 964–979. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, X.; Feng, S.; Guan, X.; Shu, F.; Wang, J. Pilot optimization and channel estimation for two-way relaying network aided by irs with finite discrete phase shifters. IEEE Trans. Veh. Technol. 2023, 72, 5502–5507. [Google Scholar] [CrossRef]
- Kreyndelin, V.; Bakulin, M.; Rejeb, T.B.; Pankratov, D.; Smirnov, A. Combination of spatial multiplexing and non-orthogonal multiple access noma. In Proceedings of the 2023 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF), St. Petersburg, Russia, 29 May–2 June 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Barb, G.; Otesteanu, M.; Alexa, F.; Ghiulai, A. Digital beamforming techniques for future communications systems. In Proceedings of the 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), Virtual, 20–22 July 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Chishiri, W.T.; Kumar, K. Analysis of beamforming performance in 5G communication. In Proceedings of the 2023 3rd International Conference on Intelligent Technologies (CONIT), Hubli, India, 23–25 June 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Girnyk, M.; Jidhage, H.; Faxér, S. Broad beamforming technology in 5G massive mimo. Ericsson Technol. Rev. 2023, 2023, 2–6. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, L.; Xu, L.; Ding, Z. Deep learning for efficient csi feedback in massive mimo: Adapting to new environments and small datasets. IEEE Trans. Wirel. Commun. 2024, 1. [Google Scholar] [CrossRef]
- Ma, R.; Yang, W.; Guan, X.; Lu, X.; Song, Y.; Chen, D. Covert mmwave communications with finite blocklength against spatially random wardens. IEEE Internet Things J. 2024, 11, 3402–3416. [Google Scholar] [CrossRef]
- Prashar, A.; Sood, N. Performance analysis of mimo-noma and siso-noma in downlink communication systems. In Proceedings of the 2022 2nd International Conference on Intelligent Technologies (CONIT), Hubli, India, 24–26 June 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Xu, J.-L.; Zhu, Z.-Y.; Chu, Z.; Niu, H.-H.; Xiao, P.; Lee, I. Sum secrecy rate maximization for irs-aided multi-cluster mimo-noma terahertz systems. IEEE Trans. Inf. Forensics Secur. 2023, 18, 4463–4474. [Google Scholar] [CrossRef]
- Khazali, A.; Shayesteh, M.G.; Kalbkhani, H. User grouping and power allocation for energy efficiency maximization in mmwave-noma heterogeneous networks. Wirel. Netw. 2022, 28, 2403–2420. [Google Scholar] [CrossRef]
- He, J.; Shi, S.; Xu, Z. User grouping and power allocation in noma-based internet of things. Wirel. Netw. 2023, 1–13. [Google Scholar] [CrossRef]
- Kim, B.; Kang, J.-M. User grouping, precoding design, and power allocation for mimo-noma systems. Mathematics 2023, 11, 995. [Google Scholar] [CrossRef]
- Mohammadkhani, S. Robust transmit beamforming design for multi-cell multiuser mimo noma. IET Commun. 2022, 16, 2193–2199. [Google Scholar] [CrossRef]
- Shin, C. Multi-cluster mimo non-orthogonal multiple access for multi-cell systems. Wirel. Netw. 2024, 30, 2187–2201. [Google Scholar] [CrossRef]
- Adam, A.B.M.; Wan, X.; Wang, Z. Energy efficiency maximization for multi-cell multi-carrier noma networks. Sensors 2020, 20, 6642. [Google Scholar] [CrossRef] [PubMed]
- Okogbaa, F.C.; Ahmed, Q.Z.; Khan, F.A.; Abbas, W.B.; Che, F.; Zaidi, S.A.; Alade, T. Design and application of intelligent reflecting surface (irs) for beyond 5G wireless networks: A review. Sensors 2022, 22, 2436. [Google Scholar] [CrossRef] [PubMed]
- Tabeshnezhad, A.; Swindlehurst, A.L.; Svensson, T. Ris-assisted interference mitigation for uplink noma. In Proceedings of the 2023 IEEE Wireless Communications and Networking Conference (WCNC), Glasgow, UK, 26–29 March 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Kumar, S.; Yadav, P.; Kaur, M.; Kumar, R. A survey on irs noma integrated communication networks. Telecommun. Syst. 2022, 80, 277–302. [Google Scholar] [CrossRef]
- Singh, K.; Saikia, M.; Thiyagarajan, K.; Thalakotuna, D.; Esselle, K.; Kodagoda, S. Multi-functional reconfigurable intelligent surfaces for enhanced sensing and communication. Sensors 2023, 23, 8561. [Google Scholar] [CrossRef]
- Liu, Y.; Mu, X.; Liu, X.; Di Renzo, M.; Ding, Z.; Schober, R. Reconfigurable intelligent surface-aided multi-user networks: Interplay between noma and ris. IEEE Wirel. Commun. 2022, 29, 169–176. [Google Scholar] [CrossRef]
- Xie, Z.; Li, X.; Zeng, M.; Deng, D.; Zhang, J.; Mumtaz, S.; Nallanathan, A. Resource allocation for double irss assisted wireless powered noma networks. IEEE Wirel. Commun. Lett. 2023, 12, 823–827. [Google Scholar] [CrossRef]
- Belső, Z.; Pap, L. On the convex hull of the achievable capacity region of the two user fdm oma downlink. Infocommun. J. 2023, 15, 9–14. [Google Scholar] [CrossRef]
- Shi, E.; Zhang, J.; Chen, S.; Zheng, J.; Zhang, Y.; Ng, D.W.K.; Ai, B. Wireless energy transfer in ris-aided cell-free massive mimo systems: Opportunities and challenges. IEEE Commun. Mag. 2022, 60, 26–32. [Google Scholar] [CrossRef]
- Tran, N.M.; Amri, M.M.; Park, J.H.; Kim, D.I.; Choi, K.W. Reconfigurable-intelligent-surface-aided wireless power transfer systems: Analysis and implementation. IEEE Internet Things J. 2022, 9, 21338–21356. [Google Scholar] [CrossRef]
- Amri, M.M.; Tran, N.M.; Park, J.H.; Kim, D.I.; Choi, K.W. Demo: Demonstration of reconfigurable intelligent surface (ris)-assisted simultaneous wireless information and power transfer (swipt). In Proceedings of the 2022 IEEE International Conference on Communications Workshops (ICC Workshops), Seoul, Republic of Korea, 16–20 May 2022; pp. 1–2. [Google Scholar] [CrossRef]
- Sharma, N.; Gautam, S.; Chatzinotas, S.; Ottersten, B. On optimizing ris-aided swipt-iots with power splitting-based non-linear energy harvesting. In Proceedings of the GLOBECOM 2023—2023 IEEE Global Communications Conference, Kuala Lumpur, Malaysia, 4–8 December 2023; pp. 619–624. [Google Scholar] [CrossRef]
- Wang, X.; Fei, Z.; Guo, J.; Zheng, Z.; Li, B. Ris-assisted spectrum sharing between mimo radar and mu-miso communication systems. IEEE Wirel. Commun. Lett. 2021, 10, 594–598. [Google Scholar] [CrossRef]
- Yan, S.; Cai, S.; Xia, W.; Zhang, J.; Xia, S. A reconfigurable intelligent surface aided dual-function radar and communication system. In Proceedings of the 2022 2nd IEEE International Symposium on Joint Communications & Sensing (JC&S), Seefeld, Austria, 9–10 March 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Xiao, J.; Tang, J.; Chen, J. Efficient radar detection for ris-aided dual-functional radar-communication system. In Proceedings of the 2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring), Florence, Italy, 20–23 June 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Aubry, A.; Maio, A.D.; Rosamilia, M. Ris-aided radar sensing in n-los environment. In Proceedings of the 2021 IEEE 8th International Workshop on Metrology for AeroSpace (MetroAeroSpace), Naples, Italy, 23–25 June 2021; pp. 277–282. [Google Scholar] [CrossRef]
- Čišija, E.; Ahmed, A.M.; Sezgin, A.; Wymeersch, H. Ris-aided mmwave mimo radar system for adaptive multi-target localization. In Proceedings of the 2021 IEEE Statistical Signal Processing Workshop (SSP), Rio de Janeiro, Brazil, 24 March 2021; pp. 196–200. [Google Scholar] [CrossRef]
- Wang, X.; Fei, Z.; Zheng, Z.; Guo, J. Joint waveform design and passive beamforming for ris-assisted dual-functional radar-communication system. IEEE Trans. Veh. Technol. 2021, 70, 5131–5136. [Google Scholar] [CrossRef]
- Lin, Z.; Lin, M.; Champagne, B.; Zhu, W.P.; Al-Dhahir, N. Secrecy-energy efficient hybrid beamforming for satellite-terrestrial integrated networks. IEEE Trans. Commun. 2021, 69, 6345–6360. [Google Scholar] [CrossRef]
- Gong, S.; Lu, X.; Hoang, D.T.; Niyato, D.; Shu, L.; Kim, D.I.; Liang, Y.C. Toward smart wireless communications via intelligent reflecting surfaces: A contemporary survey. IEEE Commun. Surv. Tutor. 2020, 22, 2283–2314. [Google Scholar] [CrossRef]
- Nguyen, T.L.; Kaddoum, G.; Do, T.N.; Costa, D.B.D.; Haas, Z.J. Adaptive decoding mechanisms for uav-enabled double-uplink coordinated noma. IEEE Trans. Veh. Technol. 2023, 72, 10200–10217. [Google Scholar] [CrossRef]
- Han, R.; Wang, Y.; Zhang, Y. Uav-assisted noma secure communications: Joint transmit power and trajectory optimization. EURASIP J. Adv. Signal Process. 2023, 2023, 97. [Google Scholar] [CrossRef]
- Rolly, R.; Malarvezhi, P.; Lagkas, T. Unmanned aerial vehicles: Applications, techniques, and challenges as aerial base stations. Int. J. Distrib. Sens. Netw. 2020, 18, 15501329221123933. [Google Scholar] [CrossRef]
- Mousa, M.; Alrubaye, S.; Inalhan, G. Unmanned aerial vehicle positioning using 5G new radio technology in urban environment. In Proceedings of the 2023 IEEE/AIAA 42nd Digital Avionics Systems Conference (DASC), Barcelona, Spain, 1–5 October 2023. [Google Scholar]
- Chen, S.; Cao, T.; Wang, M.; Zhang, H. Reflection-assisted non-line-of-sight ultraviolet communication based on drone platform. In Proceedings of the 2023 International Conference on Electrical Engineering and Photonics (EExPolytech), St Petersburg, Russian, 19–20 October 2023. [Google Scholar]
- Zhai, D.; Li, H.; Tang, X.; Zhang, R.; Ding, Z.; Yu, F.R. Height optimization and resource allocation for noma enhanced uav-aided relay networks. IEEE Trans. Commun. 2021, 69, 962–975. [Google Scholar] [CrossRef]
- Solanki, S.; Park, J.; Lee, I. On the performance of irs-aided uav networks with noma. IEEE Trans. Veh. Technol. 2022, 71, 9038–9043. [Google Scholar] [CrossRef]
- Tarasenkov, M.V.; Poznakharev, E.S.; Fedosov, A.V. Non-line-of-sight atmospheric optical communication in the visible wavelength range between uav and the ground surface. Atmosphere 2024, 15, 21. [Google Scholar] [CrossRef]
- Xu, D.; Yu, X.; Jamali, V.; Ng, D.W.K.; Schober, R. Resource allocation for large irs-assisted swipt systems with non-linear energy harvesting model. In Proceedings of the 2021 IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, 29 March–1 April 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Mazunga, F.; Nechibvute, A. Ultra-low power techniques in energy harvesting wireless sensor networks: Recent advances and issues. Sci. Afr. 2021, 11, e00720. [Google Scholar] [CrossRef]
- Lata, S.; Mehfuz, S. Efficient ambient energy-harvesting sources with potential for iot and wireless sensor network applications. In Energy Harvesting; Chapman and Hall/CRC: Boca Raton, FL, USA, 2022; pp. 19–63. [Google Scholar]
- Ijala, A.D.; Thomas, S.; Adetokun, B.B. The role of energy harvesting in 5G wireless networks connectivity. In Proceedings of the 2022 IEEE Nigeria 4th International Conference on Disruptive Technologies for Sustainable Development (NIGERCON), Abuja, Nigeria, 5–7 April 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Updhya, A. Investigation of mixed rf/fso decode-and-forward noma cooperative relaying networks. Wirel. Pers. Commun. 2022, 124, 2923–2938. [Google Scholar] [CrossRef]
- Thakur, C.; Chattopadhyay, S. A novel interference-aided rf energy harvesting scheme for cooperative noma network. In Proceedings of the 2021 IEEE 18th India Council International Conference (INDICON), Guwahati, India, 19–21 December 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Sanislav, T.; Mois, G.; Zeadally, S.; Folea, S. Energy harvesting techniques for internet of things (iot). IEEE Access 2021, 9, 39530–39549. [Google Scholar] [CrossRef]
- Roman, M.; Lale, D.; Săvescu, C.; Stoica, R. Photovoltaic energy harvesting system with light tracing sensors. In Proceedings of the 2023 13th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, 23–25 March 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Illias, H.A.; Ishak, N.S.; Mokhlis, H.; Hossain, M.Z. Iot-based hybrid renewable energy harvesting system from water flow. In Proceedings of the 2020 IEEE International Conference on Power and Energy (PECon), Virtual, 7–8 December 2020; pp. 204–208. [Google Scholar] [CrossRef]
- Mu, J.; Sun, Z. Trajectory design for multi-uav-aided wireless power transfer toward future wireless systems. Sensors 2022, 22, 6859. [Google Scholar] [CrossRef] [PubMed]
- Ansu, A.; Agrawal, R.; Sharma, R. Nanostructured materials for next-generation solar energy harvesting, conversion, and storage. In Solar Energy Harvesting, Conversion, and Storage; Elsevier: Amsterdam, The Netherlands, 2023; pp. 201–222. [Google Scholar]
- Farooq, A.; Gray, M.; Bao, X.; Wu, X. Hybrid rf-solar energy harvesting for iot. In Proceedings of the 2023 34th Irish Signals and Systems Conference (ISSC), Dublin, Ireland, 13–14 June 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Nourredine, O.; Abderrezak, D.; Karima, A.; Mira, H. A fluid approach to model and assess the energy level of autonomous devices in iot with solar energy harvesting capability. In Proceedings of the 2022 5th International Symposium on Informatics and its Applications (ISIA), M’sila, Algeria, 29–30 November 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Agrawal, S.; Parihar, M. Performance evaluation of rf energy harvesting circuit with dra and planar antennas. Wirel. Pers. Commun. 2021, 120, 343–352. [Google Scholar] [CrossRef]
- Wu, X.; Shen, L.-P.; Zhang, L. A broadband butler-based dual-polarized omni-directional antenna. Int. J. Microw. Wirel. Technol. 2023, 15, 1507–1513. [Google Scholar] [CrossRef]
- Assogba, O.; Mbodji, A.K.; Diallo, A.K. Efficiency in rf energy harvesting systems: A comprehensive review. In Proceedings of the 2020 IEEE International Conf on Natural and Engineering Sciences for Sahel’s Sustainable Development—Impact of Big Data Application on Society and Environment (IBASE-BF), Ouagadougou, Burkina Faso, 4–6 February 2020; pp. 1–10. [Google Scholar] [CrossRef]
- Zukal, J.; Szabó, Z.; Pernica, R.; Kadlec, R.; Dědková, J.; Klíma, M.; Fiala, P. Designing a robust model of a linear motion-driven harvester. In Proceedings of the 2023 Photonics & Electromagnetics Research Symposium (PIERS), Prague, China, 3–6 July 2023; pp. 732–738. [Google Scholar] [CrossRef]
- Hou, X.; Niu, L.; Qian, S.; Hu, D.; Hou, J.; Shi, S.; Geng, W.; He, J.; Chou, X. Electromagnetic energy harvester based on bidirectional vibration to unidirectional rotation conversion for environmental low-frequency vibration energy harvesting. IEEE Trans. Power Electron. 2023, 39, 1932–1941. [Google Scholar] [CrossRef]
- Choi, D.; Lee, Y.; Lin, Z.-H.; Cho, S.; Kim, M.; Ao, C.K.; Soh, S.; Sohn, C.; Jeong, C.K.; Lee, J.; et al. Recent advances in triboelectric nanogenerators: From technological progress to commercial applications. ACS Nano 2023, 17, 11087–11219. [Google Scholar] [CrossRef] [PubMed]
- Gołąbek, J.; Strankowski, M. A review of recent advances in human-motion energy harvesting nanogenerators, self-powering smart sensors and self-charging electronics. Sensors 2024, 24, 1069. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Yang, Z.; Cao, J.; Liao, W.-H. Recent advances in human motion excited energy harvesting systems for wearables. Energy Technol. 2020, 8, 2000533. [Google Scholar] [CrossRef]
- Thainiramit, P.; Yingyong, P.; Isarakorn, D. Impact-driven energy harvesting: Piezoelectric versus triboelectric energy harvesters. Sensors 2020, 20, 5828. [Google Scholar] [CrossRef] [PubMed]
- Bancuta, I.; Enescu, D.; Virjoghe, E.O. Characterisation of the thermoelectric materials for energy harvesting applications. In Proceedings of the 2022 57th International Universities Power Engineering Conference (UPEC), Istanbul, Turkey, 30 August–2 September 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Pham, V.K. A high-efficient power converter for thermoelectric energy harvesting. In Proceedings of the 2020 5th International Conference on Green Technology and Sustainable Development (GTSD), Da Nang, Vietnam, 27–28 November 2020; pp. 82–87. [Google Scholar] [CrossRef]
- Haizhun, W.; Wang, X.; Xia, Y. Sub-50mv bootstrap clock booster and integrated cold start for thermoelectric energy harvesting. In Proceedings of the 2023 IEEE 15th International Conference on ASIC (ASICON), Nanjing, China, 24–27 October 2023. [Google Scholar]
- Lenz, C.; Vostrikov, S.; Mayer, P.; Magno, M. From heat to power: Assessing thermoelectric energy harvesting for self-sustainable sensors. In Proceedings of the 2023 IEEE International Workshop on Technologies for Defense and Security (TechDefense), Rome, Italy, 20–22 November 2023. [Google Scholar]
- Škalic, I.; Marinović, I. Energy harvesting on power amplifiers based on application of thermoelectric generators. In Proceedings of the 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO), Opatija, Croatia, 28 September–2 October 2020; pp. 58–61. [Google Scholar] [CrossRef]
- Shang, Q.; Guo, H.; Liu, X.; Zhou, M. A wireless energy and thermoelectric energy harvesting system for low power passive sensor network. In Proceedings of the 2020 IEEE MTT-S International Wireless Symposium (IWS), Shanghai, China, 20–23 September 2020; pp. 1–3. [Google Scholar] [CrossRef]
- Sugiura, T.; Watanabe, Y.; Yamamura, K.; Yamakiri, S.; Nakano, N. On-chip fully integrated thermoelectric devices designed on standard cmos process. IEEE Trans. Electron Devices 2023, 70, 6534–6539. [Google Scholar] [CrossRef]
- Velichkova, R.; Stankov, P.; Simova, I.; Markov, D.; Angelova, R.A.; Pushkarov, M.; Denev, I. Integrated system for wave energy harvesting. In Proceedings of the 2021 6th International Symposium on Environment-Friendly Energies and Applications (EFEA), Sofia, Bulgaria, 24–26 March 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Kim, J.S. Wireless energy harvesting ic for low power iot sensor. In Proceedings of the 2020 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Republic of Korea, 21–23 October 2020; pp. 1757–1759. [Google Scholar] [CrossRef]
- Azangbebil, H.; Djokoto, S.S.; Agelin-Chaab, M. Experimental and numerical studies of a soft impact piezoelectric energy harvesting using an mr fluid. IEEE Sens. J. 2020, 20, 11204–11211. [Google Scholar] [CrossRef]
- Mazhar, A.R.; Majid, A.; Ali, A.; Butt, M.F.; Virk, A.A. Evaluating domestic in-pipe turbines as energy harvesting devices for tropical climates. In Proceedings of the 2023 3rd International Conference on Digital Futures and Transformative Technologies (ICoDT2), Islamabad, Pakistan, 3–4 October 2023; pp. 1–8. [Google Scholar] [CrossRef]
- Koukoutsidis, I. A fluid reservoir model for the age of information through energy-harvesting transmitters. In Proceedings of the 2021 International Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS), Fairfax, VA, USA, 19–22 July 2021; pp. 1–8. [Google Scholar] [CrossRef]
- Dragomirescu, A. On using wells turbines to harvest wave energy at the black sea. Case study for a 5 kw turbine. In Proceedings of the 2021 10th International Conference on Energy and Environment (CIEM), Bucharest, Romania, 14–15 October 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Liu, T.; Liu, Y.; Huang, S.; Xue, G. Shape optimization of oscillating buoy wave energy converter based on the mean annual power prediction model. Energies 2022, 15, 7470. [Google Scholar] [CrossRef]
- Kumawat, Y.; Shukla, S.; Verma, D.; Rathore, P.S. Wireless energy harvesting and transfer: A comprehensive review of recent developments. In Proceedings of the 2023 IEEE Renewable Energy and Sustainable E-Mobility Conference (RESEM), Bhopal, India, 17–19 May 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Yu, J. Joint beam-forming, user clustering and power allocation for mimo-noma systems. Sensors 2022, 22, 1129. [Google Scholar] [CrossRef]
- Mohsan, S.A.H.; Li, Y. A survey of noma: State of the art, key techniques, open challenges, security issues and future trends. arXiv 2023, arXiv:2306.06664. [Google Scholar]
- Merin Joshiba, J.; Judson, D.; Bhaskar, V. A comprehensive review on noma assisted emerging techniques in 5G and beyond 5G wireless systems. Wirel. Pers. Commun. 2023, 130, 2385–2405. [Google Scholar] [CrossRef]
- Flizikowski, A.; Marciniak, T.; Wysocki, T.A.; Oyerinde, O. Selected aspects of non-orthogonal multiple access for future wireless communications. Math. Comput. Sci. 2023, 17, 10. [Google Scholar] [CrossRef]
- Xu, X.; Liu, Y.; Mu, X.; Chen, Q.; Jiang, H.; Ding, Z. Artificial intelligence enabled noma toward next-generation multiple access. IEEE Wirel. Commun. 2023, 30, 86–94. [Google Scholar] [CrossRef]
- Melki, R.; Noura, H.; Chehab, A. Physical layer security for noma: Limitations, issues and recommendations. Ann. Telecommun. 2021, 76, 375–397. [Google Scholar] [CrossRef]
- Noura, H.N.; Melki, R.; Chehab, A. Efficient data confidentiality scheme for 5G wireless noma communications. J. Inf. Secur. Appl. 2021, 58, 102781. Available online: https://www.sciencedirect.com/science/article/pii/S2214212621000259 (accessed on 12 July 2024). [CrossRef]
- Salih, M.M.; Khaleel, B.M.; Qasim, N.H.; Ahmed, W.S.; Kondakova, S.; Abdullah, M.Y. Capacity, spectral and energy efficiency of oma and noma systems. In Proceedings of the 2024 35th Conference of Open Innovations Association (FRUCT), Tampere, Finland, 24–26 April 2024; pp. 652–658. [Google Scholar] [CrossRef]
- Liu, S.; Wei, G.; He, H.; Wang, H.; Chen, Y.; Hu, D.; Jiang, Y.; Chen, L. Intelligent reflecting surface-assisted physical layer key generation with deep learning in mimo systems. Sensors 2023, 23, 55. [Google Scholar] [CrossRef]
Operation Mode | Characteristics and Functions | Applications |
---|---|---|
Reflection | Consider it as the mirror for radio signals. The signal is amplified, which in turn increases the coverage and eliminates interference. | Outdoor environments (focusing signals on specific areas) |
Refraction | This mode works like a glass that straightens the route of radio signals. | Outdoor to indoor scenarios (directing signals into specific building areas) |
Absorption | Specific bands or frequencies are preferably utilized to essentially block additional noises. | Privacy and information security (indoors/outdoors) |
Backscattering | Scattering radios over a wide area, which makes it suitable for regions where signals appear to be missing. | Wide-angle blind spot coverage |
Transmitting | RIS will no longer reflect but instead become part of the transmitter itself (emitting, shaping, and directing the outgoing radio waves). | Dynamic Meta-surface Antennas (DMA) |
Receiving | An IRS panel acts as both a transmitter and a decoder of radio signals at the same time. | IRS-assisted backscatter communication |
Approach for NLoS NOMA | Potential |
---|---|
5G OTDOA positioning + UAV sensors for reliable NLoS operation [71] |
|
UV NLoS link enhancement using passive reflectors [72] |
|
NOMA + decode and forward UAV relay with height and resource optimization; IRS-aided NOMA UAV relay considering NLoS direct paths [73,74] |
|
Experimental study of NLoS visible light range communication between UAV and ground [75] |
|
Energy Harvesting Type | Concept | Advantages | Potential for NOMA | Potential for NLoS |
---|---|---|---|---|
Solar Energy Harvesting | Conversion of solar energy into electrical energy using photovoltaic (PV) panels | -Renewable and plentiful energy source -Mature technology | Useful for stationary NOMA nodes in outdoor environments | Limited: success depends on sunlight obstructions |
Radio Frequency Energy Harvesting | Harvesting energy from ambient RF signals and broadcast sources | -Remote energy supply -Useful for inaccessible areas | Excellent for urban NOMA setups with abundant RF signals | High: can harvest energy from RF signals in urban environments |
Motion-driven Energy Harvesting | Scavenging energy from ambient vibrations and human motion | -Sustainable source from everyday activities -Suitable for wearable devices | Suitable for wearable NOMA devices or nodes with user interaction | Moderate: depends on movement and vibrations |
Thermoelectric Energy Harvesting | Converting heat and temperature gradients into electrical energy using thermoelectric materials | -Solid-state technology -No moving parts -Compatible with IoT | Applicable for NOMA nodes in environments with heat differentials | Low: best suited for consistent temperature gradient environments |
Fluid Energy Harvesting | Extracting energy from fluid flows like ocean waves, rivers, and pipelines | -Significant power in fluid-rich environments | Ideal for NOMA nodes located near or in water bodies or airflow paths | Moderate: useful in areas with accessible fluid flows but not ideal for typical NLoS scenarios |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Ghafri, Y.; Asif, H.M.; Tarhuni, N.; Nadir, Z. Advancing Non-Line-of-Sight Communication: A Comprehensive Review of State-of-the-Art Technologies and the Role of Energy Harvesting. Sensors 2024, 24, 4671. https://doi.org/10.3390/s24144671
Al-Ghafri Y, Asif HM, Tarhuni N, Nadir Z. Advancing Non-Line-of-Sight Communication: A Comprehensive Review of State-of-the-Art Technologies and the Role of Energy Harvesting. Sensors. 2024; 24(14):4671. https://doi.org/10.3390/s24144671
Chicago/Turabian StyleAl-Ghafri, Yasir, Hafiz M. Asif, Naser Tarhuni, and Zia Nadir. 2024. "Advancing Non-Line-of-Sight Communication: A Comprehensive Review of State-of-the-Art Technologies and the Role of Energy Harvesting" Sensors 24, no. 14: 4671. https://doi.org/10.3390/s24144671
APA StyleAl-Ghafri, Y., Asif, H. M., Tarhuni, N., & Nadir, Z. (2024). Advancing Non-Line-of-Sight Communication: A Comprehensive Review of State-of-the-Art Technologies and the Role of Energy Harvesting. Sensors, 24(14), 4671. https://doi.org/10.3390/s24144671